Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After 5 years, free systems biology markup language has proven popular

02.03.2010
A scientific paper that describes a file format used by scientists to represent models of biological processes has exceeded 500 citations in the ISI Web of Knowledge, an online academic database that documents the impact of scientific publications.
The Systems Biology Markup Language (SBML) is designed to enable the exchange of quantitative models of biochemical networks between different computer software packages, allowing the models to be shared and published in a form other researchers can use in various software environments.

Information standards are needed by the systems biology community to help share, evaluate, and develop models of biological processes. Over the years, many scientists and computer specialists have contributed their time and expertise to the development of SBML as part of the international consortium known as the SBML Forum. The paper that first described the SBML information standard and which has exceeded the 500-citation milestone appeared in the journal Bioinformatics in 2003 and is entitled "The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models."

Michael Hucka, a Senior Research Fellow at the California Institute of Technology (Caltech) in Pasadena, and first author of the paper, has chaired the SBML Editors and SBML Team by community consensus since 2003. Today he works on all aspects of SBML and is involved with BioModels.net consortium efforts such as the BioModels Database . Said Hucka, "We're all really pleased by this outcome. The number of citations for our original paper is a validation of the usefulness of the SBML language to the scientific community. The development of SBML continues at pace thanks to the efforts of both a team of dedicated developers and an international community of volunteers and researchers, who act as SBML users and fellow developers. SBML is a free and open community resource that extends beyond the interests of any single group of researchers."

Back in 1999, when the SBML team was coming together, some of the early members of the group included Hamid Bolouri, John Doyle, Andrew Finney, Hiroaki Kitano, Herbert Sauro, and Hucka.* Hiroaki Kitano, the principal investigator who started the SBML project, is director of Sony Computer Science Laboratories, Inc., and director of the Systems Biology Institute in Tokyo, Japan. Commented Kitano, "Systems biology has triggered a revolution in biology that in time will hugely impact scientific and medical practice. The idea of SBML came from the vision that compatibility and interoperability were going to be the issue once systems biology took-off. In 1999, the group that eventually became the SBML Team at Caltech and I organized a workshop to discuss issues in software platforms and how to solve them. This is when we decided to initiate the project. Since then, many people have found value in the project and the community has grown beyond critical mass. At the time, I was fortunate to be the recipient of Japanese Exploratory Research for Advanced Technology (ERATO) funding. ERATO funding is a large-scale, extremely flexible funding that helped me to support the initiative at an early stage, make the initiative happen, and assist in making the project self-sustainable. Breaking 500 in the citation index is a sure sign that SBML is coming of age."

SBML is a computer-readable format for describing qualitative and quantitative models of biochemical reaction networks. It can also be used to express gene regulatory networks and other phenomena of interest in systems biology. Stefan Hoops, computational systems biologist at the Virginia Bioinformatics Institute (VBI) at Virginia Tech, served as an SBML Editor for three years. He helped to develop the latest edition of SBML, which is called Level 3, from 2007 until the end of 2009. Said Hoops, "SBML continues to develop in new directions. For example, the new Level 3 specification will allow a much more detailed description of biological models. As a modular solution, it is also becoming very easy to incorporate SBML into a wide range of software packages."

Pedro Mendes, associate professor at VBI and professor in the School of Computer Science, University of Manchester, England, commented, "The community-led and community-maintained initiative described in this paper set out to address a fundamental need in the systems biology community, namely to develop a computer language that facilitates communication and research for scientists interested in studying biochemical pathways and networks. SBML has been a focal point for the computational systems biology community and a catalyst for new developments in this area of research. This citation milestone affirms that SBML is the main standard in the growing field of systems biology."

Read the original paper:

* Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4): 524-531.
www.ncbi.nlm.nih.gov/pubmed/12611808?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed
_ResultsPanel.Pubmed_RVDocSum&ordinalpos=7
[PMID: 12611808]

Visit the SBML web site at http://sbml.org/Main_Page

The new SBML Level 3 Core specification is described in the following publication: Hucka, Michael, Bergmann, Frank, Hoops, Stefan, Keating, Sarah, Sahle, Sven, and Wilkinson, Darren. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core (Release 1 Candidate). Available from Nature Precedings
http://dx.doi.org/10.1038/npre.2010.4123.1 (2010)

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>