Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Cell Transplantation studies impact dental stem cell research for therapeutic purposes

09.05.2012
Two studies appearing in a recent issue of Cell Transplantation (20:11-12), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/, evaluate stem cells derived from dental tissues for characteristics that may make them therapeutically useful and appropriate for transplantation purposes.

Induced pluripotent stem cells from immature dental pulp stem cells

A Brazilian and American team of researchers used human immature dental pulp stem cells (IDPSCs) as an alternative source for creating induced pluripotent stem cells (iPSCs), stem cells that can be derived from several kinds of adult tissues. According to the study authors, production of iPSCs "opens new opportunities for increased understanding of human genetic diseases and embryogenesis" and will likely have a "great impact on future drug screening and toxicology tests."

The authors note, however, that the reprogramming methodology for making iPSCs is relatively new and "needs refining" in terms of technique, efficiency and cell type choice.

The researchers report that they easily, and in a short time frame, programmed human immature dental pulp stem cells into iPSCs with the hallmarks of pluripotent stem cells.

"Human IDPSCs can be easily derived from dental pulp extracted from adult or 'baby teeth' during routine dental visits," said study lead author Dr. Patricia C.B. Beltrao-Braga of the highly ranked National Institute of Science and Technology in Stem and Cell Therapy in Ribeirao Preto, Brazil. "hIDPSCs are immunologically privileged and can be used in the absence of any immune suppression protocol and have valuable cell therapy applications, including reconstruction of large cranial defects."
Contact: Dr. Patricia C.B. Beltrao-Braga, National Institute of Science and Technology in Stem Cell and Cell Therapy, 2051 Tenente Catao Roxo St. Ribeirao Preto, Brazil.
Tel. 55 (11) 3091-7690
Email patriciacbbbraga@usp.br
Citation: Beltrão-Braga, P. C. B.; Pignatari, G. C.; Maiorka, P. C.; Oliveira, N. A. J.; Lizier, N. F.; Wenceslau, C. V.; Miglino, M. A.; Muotri, A. R.; Kerkis, I.

Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant. 20(11-12):1707-1719;2011.

Human dental cells analyzed for telomere length, telomerase activity

A research team from the Republic of Korea has isolated a population of stem cells derived from dental tissues of third molars and found that human dental papilla stem cells (DPaSCs; dental papilla develops into dentin and dental pulp) have biological features similar to bone marrow-derived mesenchymal stem cells (MSCs) in terms of telomere length, telomerase activity and reverse transcriptase (Rtase) activity.
MSCs, one of the most studied and clinically important populations of adult stem cells, do have shortcomings associated with their isolation and expansion from bone marrow, said study lead author Dr. Gyu-Jin Rho of the College of Veterinary Medicine, Gyeongsang National University, Republic of Korea.

"The role of telomere and telomerase are critical biological features of normal tissue stem and progenitor cells," said Dr. Rho. "Telomeres are a specialized region of repetitive DNA, and telomere shortening is related to cellular life span. Lack of telomerase indicates cellular aging. We compared the telomere length and telomerase activity in DPaSCs with those in MSCs and found that DPaSCs possessed ideal characteristics on telomere length, telomerase activity and reverse transcriptase activity, making DPaSCs suitable alternative candidates for regenerative medicine."

The researchers concluded that DPaSCs could provide a source of stem cells for tooth regeneration and repair as well as a wide range of regenerative medicine applications in humans.

"These two studies highlight the potential value of two populations of stem cells that can be derived from the immature dental pulp and papilla of teeth" said Dr. Shinn-Zong Lin, professor of Neurosurgery and superintendent at the China Medical University Hospital, Beigang, Taiwan. "Their MSC-like abilities, ease of transformation to induced pluripotent stem cells, and ease of availability make them a potentially valuable cell therapy".

Contact: Dr. Gyu-Jin Rho, DVM, PhD, College of Veterinary Medicine, Gyeongsang National University, 900 Gazwa, Jinju, GN, Republic of Korea 660-701.
Tel. (+82) 55-751-5824
Fax. (+82) 55-751-5803
Email jinrho@gnu.ac.kr
Citation: Jeon, B. G.; Kang, E. J.; Mohana Kumar, B.; Maeng, G. H.; Ock, S. A.; Kwack, D. O.; Park, B. W.; Rho, G. J. Comparative Analysis of Telomere Length, Telomerase and Reverse Transcriptase Activity in Human Dental Stem Cells. Cell Transplant. 20(11-12):1693-1705; 2011.

The Coeditor-in-chief's for Cell Transplantation are at the Center for Neuropsychiatry, China Medical University Hospital, Beigang, Taiwan, and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or Camillo Ricordi, MD at ricordi@miami.edu or David Eve, PhD at celltransplantation@gmail.com

News release by Florida Science Communications www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>