Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free-energy theory borne out in large-scale protein folding

05.10.2005


Marriage of theory, experiment is first for multi-domain protein folding



In unprecedented new research, scientists at Rice University have combined theory and experiment for the first time to both predict theoretically and verify experimentally the protein-folding dynamics of a large, complex protein. The interdisciplinary research appears this week in two back-to-back papers in the Proceedings of the National Academy of Sciences.

"Researchers have successfully combined computer modeling and experimental results in folding studies for small proteins, but this is the first effective combination for a large, multi-domain protein," said study co-author Kathleen Matthews, Dean of the Wiess School of Natural Sciences and Stewart Memorial Professor of Biochemistry. "Pioneering efforts were required to establish comparable experimental and theoretical data, and the method worked remarkably well. We expect others to adopt it in their own studies."


Proteins are the workhorses of biology. At any given time, each cell in our bodies contains 10,000 or more of them. Each of these proteins is a chain of amino acids strung end-to-end like beads in necklace. For longer proteins, the chain can contain hundreds of amino acids.

Thanks to modern genomics, scientists can use DNA to decipher the amino acid sequence in a protein. But knowing the sequence gives no clue to the protein’s function, because function is inextricably tied to shape, and every protein self-assembles into its characteristic shape within seconds of being created.

"The folded, functional form of the protein is what really matters, and our interest is in creating a folding roadmap of sorts, a plot of the thermodynamic route that the protein follows as it moves toward equilibrium," said co-author Cecilia Clementi, the Norman Hackerman-Welch Young Investigator Assistant Professor of Chemistry.

The Rice research team included Clementi, Clementi’s graduate student Payel Das, experimentalist Pernilla Wittung-Stafshede, associate professor of biochemistry and cell biology, Matthews and graduate student Corey Wilson of biochemistry and cell biology.

"We know that misfolded proteins play a key but mysterious role in Alzheimer’s, Parkinson’s, diabetes and a host of other diseases, so mapping the normal route a protein takes – and finding the off-ramps that might lead to misfolding – are vitally important," Wittung-Stafshede said.

Rice’s studies were carried out on monomeric lactose repressor protein, or MLAc, a variant of the protein used by E. coli to regulate expression of the proteins that transport and metabolize lactose. MLAc contains about 360 amino acids.

While scientists know proteins containing 100 or fewer amino acids fold in a very cooperative (all-or-none) fashion, it is believed that larger proteins fold through the formation of partially folded intermediate structures before settling into their final state.

Simulating large-scale protein folding is too complex for even the most powerful supercomputer. In developing a theoretical approach that allows studying protein folding on a computer, Clementi and Das relied on the techniques of statistical mechanics, building up an overall picture of MLAc folding based upon statistical approximations of molecular events.

On the experimental side, Wittung-Stafshede, Matthews and Wilson prepared samples of MLAc and added urea to cause them to unfold. The team then injected water into the solution very fast, diluting the mixture and causing the proteins to fold. Using spectroscopy, they captured fluorescence and ultraviolet polarization patterns given off by the proteins as they folded.

"The novelty of this work is the direct and quantitative comparison of the time-dependent simulation data with the experimental measurements from circular dichroism and tryptophan fluorescence," Das said. "The excellent agreement between experiment and theory illustrates that the existence of a well-defined "folding route", at least for large proteins, can be predicted within the framework of free-energy landscape theory. This has been a very controversial issue in the field of protein folding."

Study co-authors also included Giovanni Fossati, assistant professor of physics and astronomy, who helped the team analyze and interpret the simulation data.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>