Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Free-energy theory borne out in large-scale protein folding


Marriage of theory, experiment is first for multi-domain protein folding

In unprecedented new research, scientists at Rice University have combined theory and experiment for the first time to both predict theoretically and verify experimentally the protein-folding dynamics of a large, complex protein. The interdisciplinary research appears this week in two back-to-back papers in the Proceedings of the National Academy of Sciences.

"Researchers have successfully combined computer modeling and experimental results in folding studies for small proteins, but this is the first effective combination for a large, multi-domain protein," said study co-author Kathleen Matthews, Dean of the Wiess School of Natural Sciences and Stewart Memorial Professor of Biochemistry. "Pioneering efforts were required to establish comparable experimental and theoretical data, and the method worked remarkably well. We expect others to adopt it in their own studies."

Proteins are the workhorses of biology. At any given time, each cell in our bodies contains 10,000 or more of them. Each of these proteins is a chain of amino acids strung end-to-end like beads in necklace. For longer proteins, the chain can contain hundreds of amino acids.

Thanks to modern genomics, scientists can use DNA to decipher the amino acid sequence in a protein. But knowing the sequence gives no clue to the protein’s function, because function is inextricably tied to shape, and every protein self-assembles into its characteristic shape within seconds of being created.

"The folded, functional form of the protein is what really matters, and our interest is in creating a folding roadmap of sorts, a plot of the thermodynamic route that the protein follows as it moves toward equilibrium," said co-author Cecilia Clementi, the Norman Hackerman-Welch Young Investigator Assistant Professor of Chemistry.

The Rice research team included Clementi, Clementi’s graduate student Payel Das, experimentalist Pernilla Wittung-Stafshede, associate professor of biochemistry and cell biology, Matthews and graduate student Corey Wilson of biochemistry and cell biology.

"We know that misfolded proteins play a key but mysterious role in Alzheimer’s, Parkinson’s, diabetes and a host of other diseases, so mapping the normal route a protein takes – and finding the off-ramps that might lead to misfolding – are vitally important," Wittung-Stafshede said.

Rice’s studies were carried out on monomeric lactose repressor protein, or MLAc, a variant of the protein used by E. coli to regulate expression of the proteins that transport and metabolize lactose. MLAc contains about 360 amino acids.

While scientists know proteins containing 100 or fewer amino acids fold in a very cooperative (all-or-none) fashion, it is believed that larger proteins fold through the formation of partially folded intermediate structures before settling into their final state.

Simulating large-scale protein folding is too complex for even the most powerful supercomputer. In developing a theoretical approach that allows studying protein folding on a computer, Clementi and Das relied on the techniques of statistical mechanics, building up an overall picture of MLAc folding based upon statistical approximations of molecular events.

On the experimental side, Wittung-Stafshede, Matthews and Wilson prepared samples of MLAc and added urea to cause them to unfold. The team then injected water into the solution very fast, diluting the mixture and causing the proteins to fold. Using spectroscopy, they captured fluorescence and ultraviolet polarization patterns given off by the proteins as they folded.

"The novelty of this work is the direct and quantitative comparison of the time-dependent simulation data with the experimental measurements from circular dichroism and tryptophan fluorescence," Das said. "The excellent agreement between experiment and theory illustrates that the existence of a well-defined "folding route", at least for large proteins, can be predicted within the framework of free-energy landscape theory. This has been a very controversial issue in the field of protein folding."

Study co-authors also included Giovanni Fossati, assistant professor of physics and astronomy, who helped the team analyze and interpret the simulation data.

Jade Boyd | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>