Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free-energy theory borne out in large-scale protein folding

05.10.2005


Marriage of theory, experiment is first for multi-domain protein folding



In unprecedented new research, scientists at Rice University have combined theory and experiment for the first time to both predict theoretically and verify experimentally the protein-folding dynamics of a large, complex protein. The interdisciplinary research appears this week in two back-to-back papers in the Proceedings of the National Academy of Sciences.

"Researchers have successfully combined computer modeling and experimental results in folding studies for small proteins, but this is the first effective combination for a large, multi-domain protein," said study co-author Kathleen Matthews, Dean of the Wiess School of Natural Sciences and Stewart Memorial Professor of Biochemistry. "Pioneering efforts were required to establish comparable experimental and theoretical data, and the method worked remarkably well. We expect others to adopt it in their own studies."


Proteins are the workhorses of biology. At any given time, each cell in our bodies contains 10,000 or more of them. Each of these proteins is a chain of amino acids strung end-to-end like beads in necklace. For longer proteins, the chain can contain hundreds of amino acids.

Thanks to modern genomics, scientists can use DNA to decipher the amino acid sequence in a protein. But knowing the sequence gives no clue to the protein’s function, because function is inextricably tied to shape, and every protein self-assembles into its characteristic shape within seconds of being created.

"The folded, functional form of the protein is what really matters, and our interest is in creating a folding roadmap of sorts, a plot of the thermodynamic route that the protein follows as it moves toward equilibrium," said co-author Cecilia Clementi, the Norman Hackerman-Welch Young Investigator Assistant Professor of Chemistry.

The Rice research team included Clementi, Clementi’s graduate student Payel Das, experimentalist Pernilla Wittung-Stafshede, associate professor of biochemistry and cell biology, Matthews and graduate student Corey Wilson of biochemistry and cell biology.

"We know that misfolded proteins play a key but mysterious role in Alzheimer’s, Parkinson’s, diabetes and a host of other diseases, so mapping the normal route a protein takes – and finding the off-ramps that might lead to misfolding – are vitally important," Wittung-Stafshede said.

Rice’s studies were carried out on monomeric lactose repressor protein, or MLAc, a variant of the protein used by E. coli to regulate expression of the proteins that transport and metabolize lactose. MLAc contains about 360 amino acids.

While scientists know proteins containing 100 or fewer amino acids fold in a very cooperative (all-or-none) fashion, it is believed that larger proteins fold through the formation of partially folded intermediate structures before settling into their final state.

Simulating large-scale protein folding is too complex for even the most powerful supercomputer. In developing a theoretical approach that allows studying protein folding on a computer, Clementi and Das relied on the techniques of statistical mechanics, building up an overall picture of MLAc folding based upon statistical approximations of molecular events.

On the experimental side, Wittung-Stafshede, Matthews and Wilson prepared samples of MLAc and added urea to cause them to unfold. The team then injected water into the solution very fast, diluting the mixture and causing the proteins to fold. Using spectroscopy, they captured fluorescence and ultraviolet polarization patterns given off by the proteins as they folded.

"The novelty of this work is the direct and quantitative comparison of the time-dependent simulation data with the experimental measurements from circular dichroism and tryptophan fluorescence," Das said. "The excellent agreement between experiment and theory illustrates that the existence of a well-defined "folding route", at least for large proteins, can be predicted within the framework of free-energy landscape theory. This has been a very controversial issue in the field of protein folding."

Study co-authors also included Giovanni Fossati, assistant professor of physics and astronomy, who helped the team analyze and interpret the simulation data.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>