Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It all adds up: Mathematical model shows which couples will divorce

13.02.2004


There are no general laws of human relationships as there are for physics, but a leading marital researcher and group of applied mathematicians have teamed up to create a mathematical model that predicts which couples will divorce with astonishing accuracy. The model holds promise of giving therapists new tools for helping couples overcome patterns of interaction that can send them rushing down the road toward divorce.



Psychologist John Gottman and applied mathematicians James D. Murray and Kristin Swanson will describe how the model was developed and how it enables Gottman to predict with 94 percent accuracy which couples will divorce after viewing just the first few moments of a conversation about an area of martial contention. They will discuss their work today at a press briefing during the annual meeting of the American Association for the Advancement of Science in Seattle.

"When Newton invented calculus it put science on a mathematical foundation and physics really took off," said Gottman who is a University of Washington emeritus professor of psychology and director of the Relationship Research Institute. "But psychology is a field that has lagged behind in using mathematics and there is no math in social psychology."


Murray, who is an emeritus professor of applied mathematics at the UW and Oxford University, agreed, noting that a lot of people are phobic about mathematics and that psychology has not been exposed to models.

"What we did is extract key elements into a model so that it is interpretive and predictive," Murray said. "The mathematics we came up with is trivial, but the model is astonishingly accurate."

The model was developed using data collected from hundreds of videotaped conversations between couples in Gottman’s laboratory. Physiological data, such as pulse rates also was collected and analyzed. The conversation reflected underlying problems the couple had and that is why the model is so predictive, according to Murray.

"Before this model was developed divorce prediction was not accurate," Gottman added, "and we had no idea how to analyze what we call the masters and disasters of marriage – those long-term happily married and divorced couples."

The key turned out to be quantifying the ratio of positive to negative interactions during the talk. The magic ratio is 5 to 1, and a marriage can be in trouble when it falls below this. The mathematical model charts this interaction into what the researchers call a "Dow-Jones Industrial Average for marital conversation."

"When the masters of marriage are talking about something important, they may be arguing, but they are also laughing and teasing and there are signs of affection because they have made emotional connections," Gottman said. "But a lot of people don’t know how to connect or how to build a sense of humor, and this means a lot of fighting that couples engage in is a failure to make emotional connections. We wouldn’t have known this without the mathematical model.

"It gives us a way to describe a relationship and the forces that are impelling people that we never had before The math is so visual and graphical that it allows us to visualize what happens when two people talk to each other."

It also is allowing researchers to simulate what a couple might do under different circumstances. For example, the model permits them to see what happens if a behavior changes, say a husband allowing himself to be influenced by his wife, and how that increases the number of positive interactions. Ultimately, this will allow therapists to do micro experiments with couples to strengthen their relationships, he believes.

Gottman, Murray and Swanson, who is a UW research assistant professor of pathology and adjunct research assistant professor of applied mathematics, also will participate in an AAAAS symposium on the science of love and marriage that runs from 11 a.m. to 12:30 p.m. Saturday.


###
For more information, contact Gottman at (206) 832-0300 or johng@gottmanresearch.com; Murray at (206)-842-3909 or murrayjd@amath.washington.edu; Swanson at (206) 221-6577 or swanson@amath.washington.edu

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>