Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It all adds up: Mathematical model shows which couples will divorce

13.02.2004


There are no general laws of human relationships as there are for physics, but a leading marital researcher and group of applied mathematicians have teamed up to create a mathematical model that predicts which couples will divorce with astonishing accuracy. The model holds promise of giving therapists new tools for helping couples overcome patterns of interaction that can send them rushing down the road toward divorce.



Psychologist John Gottman and applied mathematicians James D. Murray and Kristin Swanson will describe how the model was developed and how it enables Gottman to predict with 94 percent accuracy which couples will divorce after viewing just the first few moments of a conversation about an area of martial contention. They will discuss their work today at a press briefing during the annual meeting of the American Association for the Advancement of Science in Seattle.

"When Newton invented calculus it put science on a mathematical foundation and physics really took off," said Gottman who is a University of Washington emeritus professor of psychology and director of the Relationship Research Institute. "But psychology is a field that has lagged behind in using mathematics and there is no math in social psychology."


Murray, who is an emeritus professor of applied mathematics at the UW and Oxford University, agreed, noting that a lot of people are phobic about mathematics and that psychology has not been exposed to models.

"What we did is extract key elements into a model so that it is interpretive and predictive," Murray said. "The mathematics we came up with is trivial, but the model is astonishingly accurate."

The model was developed using data collected from hundreds of videotaped conversations between couples in Gottman’s laboratory. Physiological data, such as pulse rates also was collected and analyzed. The conversation reflected underlying problems the couple had and that is why the model is so predictive, according to Murray.

"Before this model was developed divorce prediction was not accurate," Gottman added, "and we had no idea how to analyze what we call the masters and disasters of marriage – those long-term happily married and divorced couples."

The key turned out to be quantifying the ratio of positive to negative interactions during the talk. The magic ratio is 5 to 1, and a marriage can be in trouble when it falls below this. The mathematical model charts this interaction into what the researchers call a "Dow-Jones Industrial Average for marital conversation."

"When the masters of marriage are talking about something important, they may be arguing, but they are also laughing and teasing and there are signs of affection because they have made emotional connections," Gottman said. "But a lot of people don’t know how to connect or how to build a sense of humor, and this means a lot of fighting that couples engage in is a failure to make emotional connections. We wouldn’t have known this without the mathematical model.

"It gives us a way to describe a relationship and the forces that are impelling people that we never had before The math is so visual and graphical that it allows us to visualize what happens when two people talk to each other."

It also is allowing researchers to simulate what a couple might do under different circumstances. For example, the model permits them to see what happens if a behavior changes, say a husband allowing himself to be influenced by his wife, and how that increases the number of positive interactions. Ultimately, this will allow therapists to do micro experiments with couples to strengthen their relationships, he believes.

Gottman, Murray and Swanson, who is a UW research assistant professor of pathology and adjunct research assistant professor of applied mathematics, also will participate in an AAAAS symposium on the science of love and marriage that runs from 11 a.m. to 12:30 p.m. Saturday.


###
For more information, contact Gottman at (206) 832-0300 or johng@gottmanresearch.com; Murray at (206)-842-3909 or murrayjd@amath.washington.edu; Swanson at (206) 221-6577 or swanson@amath.washington.edu

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>