Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It all adds up: Mathematical model shows which couples will divorce

13.02.2004


There are no general laws of human relationships as there are for physics, but a leading marital researcher and group of applied mathematicians have teamed up to create a mathematical model that predicts which couples will divorce with astonishing accuracy. The model holds promise of giving therapists new tools for helping couples overcome patterns of interaction that can send them rushing down the road toward divorce.



Psychologist John Gottman and applied mathematicians James D. Murray and Kristin Swanson will describe how the model was developed and how it enables Gottman to predict with 94 percent accuracy which couples will divorce after viewing just the first few moments of a conversation about an area of martial contention. They will discuss their work today at a press briefing during the annual meeting of the American Association for the Advancement of Science in Seattle.

"When Newton invented calculus it put science on a mathematical foundation and physics really took off," said Gottman who is a University of Washington emeritus professor of psychology and director of the Relationship Research Institute. "But psychology is a field that has lagged behind in using mathematics and there is no math in social psychology."


Murray, who is an emeritus professor of applied mathematics at the UW and Oxford University, agreed, noting that a lot of people are phobic about mathematics and that psychology has not been exposed to models.

"What we did is extract key elements into a model so that it is interpretive and predictive," Murray said. "The mathematics we came up with is trivial, but the model is astonishingly accurate."

The model was developed using data collected from hundreds of videotaped conversations between couples in Gottman’s laboratory. Physiological data, such as pulse rates also was collected and analyzed. The conversation reflected underlying problems the couple had and that is why the model is so predictive, according to Murray.

"Before this model was developed divorce prediction was not accurate," Gottman added, "and we had no idea how to analyze what we call the masters and disasters of marriage – those long-term happily married and divorced couples."

The key turned out to be quantifying the ratio of positive to negative interactions during the talk. The magic ratio is 5 to 1, and a marriage can be in trouble when it falls below this. The mathematical model charts this interaction into what the researchers call a "Dow-Jones Industrial Average for marital conversation."

"When the masters of marriage are talking about something important, they may be arguing, but they are also laughing and teasing and there are signs of affection because they have made emotional connections," Gottman said. "But a lot of people don’t know how to connect or how to build a sense of humor, and this means a lot of fighting that couples engage in is a failure to make emotional connections. We wouldn’t have known this without the mathematical model.

"It gives us a way to describe a relationship and the forces that are impelling people that we never had before The math is so visual and graphical that it allows us to visualize what happens when two people talk to each other."

It also is allowing researchers to simulate what a couple might do under different circumstances. For example, the model permits them to see what happens if a behavior changes, say a husband allowing himself to be influenced by his wife, and how that increases the number of positive interactions. Ultimately, this will allow therapists to do micro experiments with couples to strengthen their relationships, he believes.

Gottman, Murray and Swanson, who is a UW research assistant professor of pathology and adjunct research assistant professor of applied mathematics, also will participate in an AAAAS symposium on the science of love and marriage that runs from 11 a.m. to 12:30 p.m. Saturday.


###
For more information, contact Gottman at (206) 832-0300 or johng@gottmanresearch.com; Murray at (206)-842-3909 or murrayjd@amath.washington.edu; Swanson at (206) 221-6577 or swanson@amath.washington.edu

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Interdisciplinary Research:

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

nachricht Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens
19.10.2017 | University of Illinois College of Engineering

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>