Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers fly away from gravity on the 35th ESA Parabolic Flight Campaign

15.10.2003


Airbus A300 for parabolic flights


Research in 0g


Zero-G flying is just like throwing a football through the air, explains test pilot Captain Gilles Le Barzic as he briefs an audience about to leave gravity behind: "Except instead of a ball we have an aircraft."

Le Barzic is one of three expert pilots on ESA’s A-300 ’Zero-G’ Airbus, billed by its operator Novespace as ’the plane that removes gravity’. The aircraft has been specially strengthened to fly parabolic arcs enabling researchers to carry out experiments in weightlessness without going into space.

Last week saw the start of ESA’s 35th Parabolic Flight Campaign. Twelve teams from seven European countries and Canada and Russia gathered at Bordeaux-Mérignac Airport, in France, to prepare and fit their experiments inside the modified white-padded Airbus fuselage. On 14 October 2003, the A-300 lifts off for the first of three consecutive flight days.



Flying 31 parabolas each two-and-a-half-hour flight provides experimenters with about 10 minutes of weightlessness per day. Rockets and space flights provide much longer and continuous weightlessness, but only on parabolic flights can experimenters ride alongside their experiments.

The experiments on board are very diverse. They range from assessing how bubbles form in artificial blood and testing an exercise machine designed for astronauts to studying the behaviour of so-called ’complex plasmas’ found in cometary tails and judging the effectiveness of weightlessness surgery. The one common factor in the experiments is their need for weightlessness.

Bubbles in blood

How do bubbles form in simulated human blood? A Belgian group from the University of Brussels is linking up with investigators from the Universities of Thessaloniki and Thessaly in Greece to find out. "We use a tiny quarter-millimetre heater to produce the bubbles in the liquid," explains Professor Thodoris Karapantsios of the University of Thessaloniki. "It’s the same thing when bubbles form in the blood of divers experiencing the ’bends’, or a spacewalking astronaut suffers an explosive decompression. Gravity and convection currents do not distort these bubbles. They stay spherical and keep stable which makes them easier to study."

Two unusual passengers on this week’s flights are a pair of rats named Ariane and Apollo. However, they will not be aware of their free-fall. A medical team from the University of Bordeaux will perform some simple surgery on the anaesthetised rats. In this way, the team intends to investigate the feasibility of carrying out operations in space. This is something that astronauts may one day need to know how to do for long-term manned missions.

Testing for space

Several experiments are testing hardware destined for the International Space Station (ISS). One will test the concept of the flywheel-based Resistive Exercise Device. Developed by ESA with the Karolinska Institute, from Stockholm, Sweden, this invention has been specially designed to improve existing astronaut fitness machines. Astronauts rely on fitness machines to stave off the wasting effects of long-term weightlessness.

There are also two experiments flown by the Max Planck Institute for Extraterrestrial Physics – the latter in collaboration with the Moscow Institute for High Energy Density. These experiments evaluate experimental apparatus for the study for complex plasmas on ISS, entitled PK-3 and PK-4. An earlier, more basic version of the equipment is already on board the ISS and yielding results.

Complex plasmas are electrically charged gases together with dust particles that exhibit unusual behaviour. For example, during weightlessness, lattice-works of statically charged particles form, called ’plasma crystals’. Complex plasmas occur in interstellar dust clouds, proto-planetary clouds, comet tails, and planetary rings. Understanding them better might help reduce costly dust contamination in the manufacture of plasma-etched silicon circuits, here on Earth.

Results on show

Visitors to Belgium’s Euro Space Centre in Redu will soon be able to see some results from this parabolic flight for themselves. Students from the Centre’s Space Camp are performing a variety of experiments designed to clearly show the effects of weightlessness on everyday objects.

"We’re recording the results on ESA 3D cameras," says Centre teacher Pierre-Emmanuel Paulis. "We will put them on display at the Centre as soon as possible, and use them to teach young children about space." ESA also organises parabolic flight campaigns for students. Do you have a promising idea for a weightlessness experiment? It could be your ticket to ride, so send your application for next year’s 7th Student Parabolic Flight Campaign before 12 January 2004.

Dieter Isakeit | ESA
Further information:
http://www.esa.int/export/esaHS/SEMIUH1P4HD_index_0.html

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>