Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers fly away from gravity on the 35th ESA Parabolic Flight Campaign

15.10.2003


Airbus A300 for parabolic flights


Research in 0g


Zero-G flying is just like throwing a football through the air, explains test pilot Captain Gilles Le Barzic as he briefs an audience about to leave gravity behind: "Except instead of a ball we have an aircraft."

Le Barzic is one of three expert pilots on ESA’s A-300 ’Zero-G’ Airbus, billed by its operator Novespace as ’the plane that removes gravity’. The aircraft has been specially strengthened to fly parabolic arcs enabling researchers to carry out experiments in weightlessness without going into space.

Last week saw the start of ESA’s 35th Parabolic Flight Campaign. Twelve teams from seven European countries and Canada and Russia gathered at Bordeaux-Mérignac Airport, in France, to prepare and fit their experiments inside the modified white-padded Airbus fuselage. On 14 October 2003, the A-300 lifts off for the first of three consecutive flight days.



Flying 31 parabolas each two-and-a-half-hour flight provides experimenters with about 10 minutes of weightlessness per day. Rockets and space flights provide much longer and continuous weightlessness, but only on parabolic flights can experimenters ride alongside their experiments.

The experiments on board are very diverse. They range from assessing how bubbles form in artificial blood and testing an exercise machine designed for astronauts to studying the behaviour of so-called ’complex plasmas’ found in cometary tails and judging the effectiveness of weightlessness surgery. The one common factor in the experiments is their need for weightlessness.

Bubbles in blood

How do bubbles form in simulated human blood? A Belgian group from the University of Brussels is linking up with investigators from the Universities of Thessaloniki and Thessaly in Greece to find out. "We use a tiny quarter-millimetre heater to produce the bubbles in the liquid," explains Professor Thodoris Karapantsios of the University of Thessaloniki. "It’s the same thing when bubbles form in the blood of divers experiencing the ’bends’, or a spacewalking astronaut suffers an explosive decompression. Gravity and convection currents do not distort these bubbles. They stay spherical and keep stable which makes them easier to study."

Two unusual passengers on this week’s flights are a pair of rats named Ariane and Apollo. However, they will not be aware of their free-fall. A medical team from the University of Bordeaux will perform some simple surgery on the anaesthetised rats. In this way, the team intends to investigate the feasibility of carrying out operations in space. This is something that astronauts may one day need to know how to do for long-term manned missions.

Testing for space

Several experiments are testing hardware destined for the International Space Station (ISS). One will test the concept of the flywheel-based Resistive Exercise Device. Developed by ESA with the Karolinska Institute, from Stockholm, Sweden, this invention has been specially designed to improve existing astronaut fitness machines. Astronauts rely on fitness machines to stave off the wasting effects of long-term weightlessness.

There are also two experiments flown by the Max Planck Institute for Extraterrestrial Physics – the latter in collaboration with the Moscow Institute for High Energy Density. These experiments evaluate experimental apparatus for the study for complex plasmas on ISS, entitled PK-3 and PK-4. An earlier, more basic version of the equipment is already on board the ISS and yielding results.

Complex plasmas are electrically charged gases together with dust particles that exhibit unusual behaviour. For example, during weightlessness, lattice-works of statically charged particles form, called ’plasma crystals’. Complex plasmas occur in interstellar dust clouds, proto-planetary clouds, comet tails, and planetary rings. Understanding them better might help reduce costly dust contamination in the manufacture of plasma-etched silicon circuits, here on Earth.

Results on show

Visitors to Belgium’s Euro Space Centre in Redu will soon be able to see some results from this parabolic flight for themselves. Students from the Centre’s Space Camp are performing a variety of experiments designed to clearly show the effects of weightlessness on everyday objects.

"We’re recording the results on ESA 3D cameras," says Centre teacher Pierre-Emmanuel Paulis. "We will put them on display at the Centre as soon as possible, and use them to teach young children about space." ESA also organises parabolic flight campaigns for students. Do you have a promising idea for a weightlessness experiment? It could be your ticket to ride, so send your application for next year’s 7th Student Parabolic Flight Campaign before 12 January 2004.

Dieter Isakeit | ESA
Further information:
http://www.esa.int/export/esaHS/SEMIUH1P4HD_index_0.html

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>