Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ACE inhibitor drug used to delay heart failure as effective in blacks as whites

19.07.2002


Dr. Daniel Dries, left, and Dr. Mark Drazner found that enalapril, an ACE inhibitor commonly given to patients with heart failure, is just as effective for black patients with heart failure as it is for white patients.


A drug widely used to treat patients with heart failure is as effective for black patients as it is for white patients, according to researchers at UT Southwestern Medical Center at Dallas.

The results of this analysis do not support the hypothesis that black patients with heart failure may not respond as well to angiotensin-converting enzyme (ACE) inhibitors as white patients with heart failure, said Dr. Daniel Dries, lead author of the study in today’s issue of the Journal of the American College of Cardiology and assistant professor of internal medicine at UT Southwestern.

"Although the black participants responded equally well to the ACE-inhibitor as white participants, they still had overall increased rates of progression to heart failure," Dries said. "The precise explanation for the racial differences in the natural history of asymptomatic reductions in pump function is not known, but these data indicate that it is not explained by racial differences in response to ACE-inhibitor therapy."



A retrospective analysis of 4,054 study participants involved in the Studies of Left Ventricular Dysfunction (SOLVD) Prevention Trial found that enalapril, an ACE-inhibitor commonly given to patients with heart failure, is effective at reducing the development of heart failure in both population groups. Results of the SOLVD Prevention Trial were originally published in 1992 in The New England Journal of Medicine.

A 2001 report, in which Dries participated, suggested that enalapril was less effective in reducing the risk of hospitalization for heart failure in blacks compared to whites. There was no evidence for racial differences in enalapril’s ability to reduce the risk of death. The analysis reported today focused specifically on the ability of ACE-inhibitor therapy to delay the development of heart failure in patients with asymptomatic reductions in heart function.

"The previous study found evidence for racial differences in response to ACE-inhibitor therapy only for a single clinical endpoint - the risk for hospitalization - which can be influenced by a variety of environmental and social factors," said Dries. "In this study, the benefit of enalapril was consistent and robust in reducing a spectrum of clinical endpoints indicating disease progression in both black and white participants."

Dr. Mark Drazner, a co-author of the study and assistant professor of internal medicine, said the present study showed that enalapril prevented the development of heart failure in black and white patients equally well.

"Coupling this with previous data showing that enalapril resulted in comparable reductions in mortality in black and white patients with heart failure, we believe that ACE-inhibitors should remain a cornerstone of therapy in patients with a weak or failing heart, irrespective of their race or ethnicity," Drazner said.

Dr. Mark Strong, assistant professor of internal medicine at UT Southwestern, also participated in the study.

Amy Shields | EurekAlert

More articles from Interdisciplinary Research:

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>