Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Fire Protection for People and Equipment

22.11.2012
A new radio-operated fire alarm system from Siemens offers reliable and error-free fire protection.

The Swing (Siemens Wireless Next Generation) system combines failsafe wireless communication with the best possible fire detection features. The system uses mesh networking technology that boasts the same reliability as cable-based solutions.



Patented ASA (Advanced Signal Analysis) technology enables Swing to detect fires under all types of conditions, while also preventing false alarms, which can be costly and dangerous.

Fire alarm systems should not be fooled by steam or cigarette smoke, and must also be able to effectively protect people or expensive equipment. Another challenge involves installing such systems in buildings where wiring is either not an option or else not desired. In this case, radio operated systems are used - but up until now these haven't been able to offer the same level of reliability and safety as cable-based solutions.

The failsafe Siemens system employs mesh technology, which has already established itself as a proven standard for secure wireless transmission in the IT sector. In this setup, each device maintains constant contact with neighboring units to ensure there are always at least two redundant paths for data communication. Moreover, because each device operates on two frequency bands and using several channels, the network is able to "heal" itself in the event of a disruption by automatically switching frequencies or channels, or by sending crucial data to a fire alarm center via non-affected units.

Swing is so reliable that it isn't fooled by steam in large kitchens or welding operations in factories, yet it reacts with high sensitivity in hospitals, museums, and clean rooms. ASA technology is what makes the system so foolproof: Each ASA multi-sensor alarm is equipped with two temperature sensors and two optical infrared sensors, which means the alarm units can detect both heat and smoke. Depending on the ambient conditions, the alarms are loaded with special ASA parameters to make their reactions more sensitive or more robust. The system can also call upon a digital library containing thousands of test case studies of all different types of fires, interpret signals in realtime, and then dynamically adjust parameter sets as needed.

Swing wireless networks can be installed quickly and easily, and the alarm units can even be moved around without interrupting operations in the facilities they monitor. This makes the system ideal for historical buildings and museums, industrial plants with variable operations, and trade fair and exhibition centers.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Information Technology:

nachricht Superfast fluorescence sets new speed record
27.07.2015 | Duke University

nachricht Two crystals are better than one
22.07.2015 | The Agency for Science, Technology and Research (A*STAR)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>