Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Factories: European research project focuses on the human component in tomorrow’s production

26.02.2015

Launch of the biggest project in Austria focusing on the topic of “Industry 4.0”: the VIRTUAL VEHICLE Research Center in Graz coordinates the 7.9 million Euro project “FACTS4WORKERS”. The project includes 15 European research partners over a time of four years and aims at creating attractive and intelligent work places and boosting Europe as a production location. Improved training and increase of investment in factories and research & development will help bring Europe new and better jobs.

Production is moving constantly away from European high-wage countries to so-called “best-cost” countries or to locations with low energy cost. To fight this trend the European industry is challenged to develop intelligent added-value concepts for the field of production.


The project partners of FACTS4WORKERS at the kick-off meeting in Graz

Photo: VIRTUAL VEHICLE

The EU-commission wants to reverse “the shrinking role of the industry” and restore the “attractiveness of Europe as a production location”, says the responsible commissioner Antonio Tajani. With more investment in factories and research & development the amount the industry contributes to the European economic output should be increased from currently 15 to 20 per cent by 2020.

A large-scale research project now puts the worker into to the centre of future-oriented production concepts in order to render manufacturing jobs more attractive and help Europe to become more competitive. As of December 1st 2014 the VIRTUAL VEHICLE Research Center in Graz coordinates the project “Worker Centric Workspaces in Smart Factories (in short “FACT4WORKERS”).

15 European research partners from eight countries are part of this newly founded consortium. The four year long research initiative is being funded through Horizon 2020, which is a EU funding programme for research and innovation of the European Commission, running from 2014 to 2020.

Ambitious goals in research

The results of this research project are supposed to initiate a new industrial era, which is characterized by the so-called “Smart Factory”. The “Smart Workers” in those production sites will be ideally supported by information and communication technology in order to improve the manufacturing process regarding flexibility, efficiency, and reliability. This results in a local benefit in competition, and (central) European production locations can be secured in the long term.

Smart Factory

In a “Smart Factory”, the production site of the future, the focus lies on the worker as the most flexible element involved in the manufacturing process. He or she becomes a “production knowledge worker” and is supported by optimized information and communication technology, self-learning working environment, and in-situ learning while operating the machine.

The intended digitalisation is not limited to single factories, it will affect entire added value networks. This can be achieved via so-called “cyber-physical systems”, which are systems consisting of various components (IT, software, mechanical parts, etc.) that communicate via the internet or other means of communication.

The human component - a key factor

In addition to this technical approach, there also has to be a focus on the role of the worker as the human component and key factor in the manufacturing process. Here the term “knowledge work” is coined. Knowledge work is completely different from traditional automated routine activities in a factory. It is defined by an entirely new, complex, and autonomous work environment. Furthermore, “Smart Workers” develop new ways of continuous improvement of knowledge exchange on their own at the work place.

“We have to bring into question, how people work and learn, how they interact with new technologies, and how they can create an added value to the industry by working at an attractive and demanding work place”, explains Martin Wifling, project leader of FACTS4WORKERS at the VIRTUAL VEHICLE Research Center in Graz. The answers to these questions are the key to successful and human-centred solutions of information and communication strategies within manufacturing processes.

By reflecting on the situation of the worker in the manufacturing process it is possible to increase their satisfaction and motivation, which can lead to an overall increase of productivity by 10 per cent. The main research focus in this project, though, lies in “creating a significantly more attractive work area in manufacturing in Europe so that more people choose this demanding and ever changing occupational field”, says Wifling.


FACTS4WORKERS focuses on the following use cases:

Assisted machine operator
Due to the individualisation of products the batch sizes decrease. At the same time the rate of highly special and quickly changing information from multiple sources increases. Though, manual action by the operator is still necessary. At this point innovative interaction mechanisms such as data goggles are being used to display crucial information to the operator during the manufacturing process. Elements such as checklists, job specifications, manuals, and work orders, which are being printed from MES- and ERP-systems and are still commonly used, will disappear over time.

Human centred knowledge management
The necessary information will be delivered to the Smart Worker just in time in order to improve the production sequence. Furthermore, a new culture is being established, in which knowledge is shared voluntarily and pro active. Accessories in the working area should show intuitive interaction mechanisms such as voice-, touch-, or gesture-activation instead of text input. Practical knowledge can be transferred easier with graphical animations or videos then in written form.

Self-learning work places
Machines, tools, and other infrastructures in Smart Factories are considered to be intelligent. The output data of this infrastructure has to be exchanged effectively, so that it is possible to efficiently produce smaller sized batches. Already today there is more data output in production than ever before. This data has to be intelligently linked in order to take care of maintenance, spare parts, mounting of machines etc. in advance.

In-situ learning in the production process
When it comes to in-situ learning the Smart Worker is being focused on as the “learner”. Mobile, personalised, and situation-adaptive learning systems support life-long learning and cross-generational passing on of know-how, especially regarding demographic change. New production workers are brought to the manufacturing level of Smart Workers through context-based learning, concepts of manufacturing laboratories (FabLabs), and simulations in virtual reality environments. Data goggles and wearables offer ideal in- and output options for various use cases.

A step-by-step realization of Smart Factories is able to restructure production centres with production work undergoing an economic and social change of values. Production sites therefore are not only stabilised on a technological and economic, but also on a social level.

VIRTUAL VEHICLE

VIRTUAL VEHICLE is a leading research center in Graz, Austria, that develops affordable, safe and environmentally friendly vehicle concepts for road and rail. The key aspects of the research and development include connecting numeric simulation and experimental verification, as well as developing a comprehensive, full-vehicle system simulation.

About 200 experts from an international network of industrial and research partners devise innovative solutions and develop new methods and technologies for the vehicles of tomorrow. VIRTUAL VEHICLE is currently working in close collaboration with over 80 industrial partners and, in addition to our principle scientific partner, Graz University of Technology, 45 global university research institutes.

Contact:
Martin Wifling
VIRTUAL VEHICLE Research Center
martin.wifling@v2c2.at
Phone: +43 316 873 9077

Weitere Informationen:

http://www.v2c2.at - Website VIRTUAL VEHICLE

Elisabeth Pichler | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>