Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Leicester Team Fight Computer 'Obesity' Crisis

05.12.2007
Fighting software flab is a priority say scientists

Obesity is not just a problem for people. Cutting-edge research in the Department of Computer Science at the University of Leicester is tackling the problem of ‘obesity’ in computer software.

Scientists say that although software does not wear out like cars and other equipment, if it does not follow a healthy life style, it can become obese, fragile or brittle and stop performing well.

The danger to operating systems is acute in sectors that are undergoing modernisation and institutions like banks, warn the Leicester team.

Now a group of researchers at the University of Leicester are collaborating with ATX Software, a company that develops technology that supports re-engineering of legacy systems, in devising new methods and techniques that can be used to keep software agile and fit for purpose.

This research is being sponsored by the Marie-Curie programme as an Industry-Academia Partnership called Leg2Net.

Professor José Luiz Fiadeiro, the coordinator of Leg2Net, explained: “To many people, software is something that allows us to use a computer to perform certain activities (like writing a piece of text). However, software doesn't just sit inside the computer. It has a life of its own and evolves over time.

“This is what happens, for instance, when we are asked if we want to download an updated version of the application that we have just launched. The fact that software needs to be continually adapted in order to deliver the same level of satisfaction to the user (or even increase it), is known as Lehman's first law of software evolution.

“Large organisations such as banks use very complex software applications and evolving them is a highly challenging task. For a start, there is not only one user to be kept satisfied. If one is not careful, complexity increases as software is evolved. This is known as Lehman's second law of software evolution.”

Luis Andrade, CEO of ATX Software, adds: “Very often, layers of software keep being added without restructuring what was there already, or new applications are coarsely stitched to old ones without taking into account the global structure or architecture of the system.

“In modern terms, we could say that software becomes "obese" as it lets "fat" accumulate, for instance, old code that is no longer necessary. As a result, applications become less and less efficient, more and more difficult to change. And, when this happens, systems begin to lack the agility, flexibility, and responsiveness that companies require to address the fierce competition and market volatility that characterises business today.”

The intervention technique is tantamount to 'liposuction' a one-off application that restructures the software and delivers a high-level architecture (muscle) that is independent of the code.

However, in order for computer software to function healthily, changes to the application are done on the architecture –the scientists effectively work on the muscle - and the code is generated automatically so as to preserve the architecture. However, if people (programmers) fiddle directly with the code, the architectural link is lost and 'fat' starts to accumulate again.

At Leicester, the Leg2Net team is researching some of the techniques that can be used to combat this problem. As with humans, Professor Reiko Heckel says, one can make a surgical operation to remove the fat. In software engineering, this requires a careful analysis of the code, breaking it into meaningful chunks so that one can understand what is "fat" and what is "muscle", and reorganise what is left so that the original functionality is preserved. These re-engineering techniques are based on graphs and require sophisticated mathematical operations - a job for specialists, supported by clever software tools such as those developed by ATX.

As with humans, if software does not change its ‘life style’, fat will accumulate again. One of the methods that has been gaining popularity for keeping software fit and agile is the adoption of a service-oriented architecture.

This is an infrastructure that reduces complexity and maximises flexibility by relying not on monolithic systems put together from rigid and static connections between components, but on systems that can be dynamically reconfigured by procuring the best service that can contribute to the task at hand.

Professor Heckel continued: “At Leicester, we are doing research aimed precisely at re-engineering "obese" (aka "legacy") software into such service-oriented architectures, and on ways of supporting evolution within those architectures.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk.

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>