Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plotting the road ahead for wireless sensor networks

28.03.2006


Wireless sensor networks consisting of multiple objects, each capable of simple sensing, actuation, communication and processing have tremendous potential. To better realise their full capabilities researchers are developing a broad vision of innovative future applications.



Wireless sensor networks are a typical example of a network of ‘cooperating objects’, tiny embedded computers that cooperate together to produce an intended result. Such embedded systems, be they tiny processors in ‘intelligent clothing’ or the increasing numbers of computers in automobiles, are characterised by their need to interact with their immediate surroundings. However, it is only by cooperation with other objects that the full capabilities of such networks can be reached.

The problem faced by system designers is that, with so many cooperation possibilities with other networks, intelligent objects or even users themselves, how are they to know the best research direction to take? Which possibilities are likely to be taken up by society and industry globally, and which will turn out to be a blind alley?


These are the questions that the IST project Embedded WiseNts aims to answer. The project has brought together twelve partners from ten different European countries, the top research institutions in wireless communication, distributed computing and cooperating objects, to come up with some answers.

The project partners are focusing on the development of Wireless Sensor Networks (WSN) and their applications, especially in the form of Cooperating Objects (CO), to help develop a roadmap for innovative future applications. Their objective is to gain a broad vision of embedded wireless networks in the future (+/- 10 years), what their requirements would be and what technical progress is needed to this end.

What specific areas of weakness have the team found? “One of the first things we noticed is that most applications out there at the moment are very application specific,” says Marrón. “Which means that one key area we must address is that of adaptation. There is a distinct need for a middleware layer to cope with the diversity of software layers.”

“We have a big issue in energy-aware software, for example,” he continues. “When you have lots of small cooperating objects everywhere, you cannot keep stopping to change the batteries. So we need better energy efficiency both in hardware and software, and that can be either better batteries or algorithms that are more power-aware, that can turn off the radio module in the software, say, when it is not in use. As this will affect many software layers, we need to have cross-layer information.”

While systems designers are working on areas like energy-efficient hardware and software algorithms right now, Marrón believes that these issues and others even more important, such as security and authentication, will remain important issues for the next ten years.

Embedded WiseNts ends in December 2006. The project’s findings are already feeding into other research areas associated with cooperating objects. One example is a new project which is examining the possibilities for using cooperating objects in combination with robotics.

“The promise of cooperating objects in robotics is very big,” says Marrón. “[We] will be looking at how to develop a sensor system for the robots being introduced in fire fighting, as well as for the support of tiny autonomous flying objects known as unmanned aerial vehicles or UAVs.”

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81223

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>