Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Many Squares, Mr. Franklin?

17.06.2004


This is a magic square created by Benjamin Franklin


When he wasn’t experimenting with lightning or overthrowing the British Empire, Benjamin Franklin found time to fool around with mathematics, inventing a variant of the magic square called Franklin’s squares. Now Maya Ahmed, a mathematics graduate student at UC Davis, has come up with a way to construct both Franklin’s own squares and others of the same type. The methods could have applications in computer programming for business.

A regular magic square is a table of numbers in which any row, column or diagonal adds up to the same number. Mathematicians around the world have studied them for thousands of years.

"They are classical, beautiful objects," said Jesus De Loera, associate professor of mathematics at UC Davis and Ahmed’s thesis supervisor.



Franklin’s squares are similar, but instead of diagonals adding to the magic number, the bent diagonals add to the magic number. The four corners and four center squares also add to the magic number.

Franklin himself created three such squares, two that are eight rows by eight columns and one of 16 by 16.

"No one knows how he did it," Ahmed said. "They’re very hard to construct."

Ahmed’s method turns what looks like an arithmetic problem into a geometry problem. The numbers in a Franklin square can be described by a series of equations -- 127 equations for an eight-by-eight square. Those equations also describe a cone-shaped object in multiple (more than three) dimensions. That yields the basic elements of a Franklin square.

Using this method, Ahmed could both reconstruct Franklin’s three original squares and create new ones that obey the same rules. She was also able to work out the maximum possible number of eight-by-eight Franklin squares: just over 228 trillion.

Franklin regarded his squares as "incapable of useful application." But Ahmed’s methods can also be used to find whole-number solutions to problems of linear equations. An example would be scheduling aircraft and crew members for an airline, De Loera said.

The paper is published in the May issue of the American Mathematical Monthly.

Andy Fell | UC Davis News
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=7057

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>