Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists develop tool for mining genomic data

16.02.2004


Equipped with cutting-edge techniques to track the activity of tens of thousands of genes in a single experiment, biologists now face a new challenge - determining how to analyze this tidal wave of data. Stanford Associate Professor of Computer Science Daphne Koller and her colleagues have come to the rescue with a strategic approach that reduces the trial-and-error aspect of genetic sequence analysis.



’’What we’re developing is a suite of computational tools that take reams of data and automatically extract a picture of what’s happening in the cell,’’ says Koller. ’’It tells you where to look for good biology.’’

Koller presented her statistical approach for mining genomic data at a Feb. 14 symposium - ’’Machine Learning in the Sciences’’ - at the annual meeting of the American Association for the Advancement of Science (AAAS) in Seattle.


Several years ago, before Koller came onto the scene, a new generation of high-throughput assays revolutionized molecular biology. In the most stunning example of this technology, scientists began using thumbnail-sized ’’gene chips’’ to monitor the activities of thousands of genes at once. In October 2003, Santa Clara-based Affymetrix took this breakthrough to a new level when it began marketing whole-genome chips packed with all 30,000 to 50,000 known human genes. Genome chips can reveal, for instance, that in kidney cells treated with a certain drug, 116 genes spring into action while another 255 get shut off.

But this state-of-the-art DNA microarray technology provides only a single snapshot of the cell. ’’It’s a very partial view,’’ Koller says.

What scientists really want to know is how groups of genes work together to control specific biological processes, such as muscle development or cancer progression. Unraveling these regulatory networks - for example, determining that Gene A gets activated by Gene B but repressed by Gene C - is a daunting task.

Sifting through whopping amounts of DNA microarray data to cull the hundreds of activator and repressor candidates is actually the easy part. The real challenge is figuring out which of these genes, if any, are biologically meaningful. This requires a bewildering array of hit-or-miss wet-lab experiments that examine protein-protein and protein-DNA interactions among the candidate genes.

Koller’s computational tools will make this scheme less formidable by providing scientists with targeted hypotheses in the form of ’’Gene A regulates Gene B under Condition C.’’ These predictions are generated from a probabilistic framework that integrates data from a variety of sources, including microarrays, DNA sequences, and protein-protein and protein-DNA interactions.

As Koller sees it, each of these sources offers a glimpse into what is happening in the cell: ’’a snapshot from this angle, a shot from another angle, data from a third, and so on.’’ Her computational scheme creates ’’the best picture we can construct from putting all of these snapshots together.’’

The proof of concept for Koller’s targeted hypotheses came in a June 2003 Nature Genetics publication, which described the application of her tools to predict gene regulatory networks in a variety of biological processes in yeast. Three of these predictions were confirmed in wet-lab experiments, suggesting regulatory roles for previously uncharacterized proteins.

’’The creativity and computer science perspective brought to these problems by Koller and her collaborators provide a tremendous boost to biology,’’ says Matthew Scott, a developmental biologist at Stanford and chair of the scientific leadership council of Bio-X, an interdisciplinary initiative. His research group has used Koller’s approach to identify genes involved in specific processes during embryonic development, to determine which genes are key regulators of other genes and to track changes in gene activities during disease progression.

Scott adds that while the computational methods suggest interesting hypotheses, their ultimate validation relies upon lab experiments.

In the future, Koller hopes to develop her scheme to handle multi-species analysis - for instance, to identify gene regulatory networks that appear in both human and mouse genomes. ’’When a regulatory module is conserved across multiple species, that indicates it’s playing a significant role,’’ Koller says.

Koller’s collaborators include Eran Segal and Michael Shapira (both of Stanford), Nir Friedman (Hebrew University of Jerusalem), Aviv Regev (Harvard Center for Genome Research), Dana Pe’er (Harvard-Lipper Center for Computational Genetics), Roman Yelensky (Massachusetts Institute of Technology) and David Botstein (Princeton University).

Esther Landhuis | EurekAlert!
Further information:
http://robotics.stanford.edu/~koller/index.html
http://dags.stanford.edu
http://www.stanford.edu/news/

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>