Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists develop tool for mining genomic data

16.02.2004


Equipped with cutting-edge techniques to track the activity of tens of thousands of genes in a single experiment, biologists now face a new challenge - determining how to analyze this tidal wave of data. Stanford Associate Professor of Computer Science Daphne Koller and her colleagues have come to the rescue with a strategic approach that reduces the trial-and-error aspect of genetic sequence analysis.



’’What we’re developing is a suite of computational tools that take reams of data and automatically extract a picture of what’s happening in the cell,’’ says Koller. ’’It tells you where to look for good biology.’’

Koller presented her statistical approach for mining genomic data at a Feb. 14 symposium - ’’Machine Learning in the Sciences’’ - at the annual meeting of the American Association for the Advancement of Science (AAAS) in Seattle.


Several years ago, before Koller came onto the scene, a new generation of high-throughput assays revolutionized molecular biology. In the most stunning example of this technology, scientists began using thumbnail-sized ’’gene chips’’ to monitor the activities of thousands of genes at once. In October 2003, Santa Clara-based Affymetrix took this breakthrough to a new level when it began marketing whole-genome chips packed with all 30,000 to 50,000 known human genes. Genome chips can reveal, for instance, that in kidney cells treated with a certain drug, 116 genes spring into action while another 255 get shut off.

But this state-of-the-art DNA microarray technology provides only a single snapshot of the cell. ’’It’s a very partial view,’’ Koller says.

What scientists really want to know is how groups of genes work together to control specific biological processes, such as muscle development or cancer progression. Unraveling these regulatory networks - for example, determining that Gene A gets activated by Gene B but repressed by Gene C - is a daunting task.

Sifting through whopping amounts of DNA microarray data to cull the hundreds of activator and repressor candidates is actually the easy part. The real challenge is figuring out which of these genes, if any, are biologically meaningful. This requires a bewildering array of hit-or-miss wet-lab experiments that examine protein-protein and protein-DNA interactions among the candidate genes.

Koller’s computational tools will make this scheme less formidable by providing scientists with targeted hypotheses in the form of ’’Gene A regulates Gene B under Condition C.’’ These predictions are generated from a probabilistic framework that integrates data from a variety of sources, including microarrays, DNA sequences, and protein-protein and protein-DNA interactions.

As Koller sees it, each of these sources offers a glimpse into what is happening in the cell: ’’a snapshot from this angle, a shot from another angle, data from a third, and so on.’’ Her computational scheme creates ’’the best picture we can construct from putting all of these snapshots together.’’

The proof of concept for Koller’s targeted hypotheses came in a June 2003 Nature Genetics publication, which described the application of her tools to predict gene regulatory networks in a variety of biological processes in yeast. Three of these predictions were confirmed in wet-lab experiments, suggesting regulatory roles for previously uncharacterized proteins.

’’The creativity and computer science perspective brought to these problems by Koller and her collaborators provide a tremendous boost to biology,’’ says Matthew Scott, a developmental biologist at Stanford and chair of the scientific leadership council of Bio-X, an interdisciplinary initiative. His research group has used Koller’s approach to identify genes involved in specific processes during embryonic development, to determine which genes are key regulators of other genes and to track changes in gene activities during disease progression.

Scott adds that while the computational methods suggest interesting hypotheses, their ultimate validation relies upon lab experiments.

In the future, Koller hopes to develop her scheme to handle multi-species analysis - for instance, to identify gene regulatory networks that appear in both human and mouse genomes. ’’When a regulatory module is conserved across multiple species, that indicates it’s playing a significant role,’’ Koller says.

Koller’s collaborators include Eran Segal and Michael Shapira (both of Stanford), Nir Friedman (Hebrew University of Jerusalem), Aviv Regev (Harvard Center for Genome Research), Dana Pe’er (Harvard-Lipper Center for Computational Genetics), Roman Yelensky (Massachusetts Institute of Technology) and David Botstein (Princeton University).

Esther Landhuis | EurekAlert!
Further information:
http://robotics.stanford.edu/~koller/index.html
http://dags.stanford.edu
http://www.stanford.edu/news/

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>