Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roadrunner supercomputer puts research at a new scale

16.06.2008
Code run on the machine mimics brain mechanisms underlying human sight

Less than a week after Los Alamos National Laboratory's Roadrunner supercomputer began operating at world-record petaflop/s data-processing speeds, Los Alamos researchers are already using the computer to mimic extremely complex neurological processes.

Welcome to the new frontier of research at Los Alamos: science at the petascale.

The prefix "peta" stands for a million billion, also known as a quadrillion. For the Roadrunner supercomputer, operating at petaflop/s performance means the machine can process a million billion calculations each second. In other words, Roadrunner gives scientists the ability to quickly render mountainous problems into mere molehills, or model systems that previously were unthinkably complex.

Late last week and early this week while verifying Roadrunner's performance, Los Alamos and IBM researchers used three different computational codes to test the machine. Among those codes was one dubbed "PetaVision" by its developers and the research team using it.

PetaVision models the human visual system—mimicking more than 1 billion visual neurons and trillions of synapses. Neurons are nerve cells that process information in the brain. Neurons communicate with each other using synaptic connections, analogous to what transistors are in modern computer chips. Synapses store memories and play a vital role in learning.

Synapses set the scale for computations performed by the brain while undertaking such tasks as locomotion, hearing or vision. Because there are about a quadrillion synapses in the human brain, human cognition is a petaflop/s computational problem.

To date, computers have been unable to match human performance on such visual tasks as flawlessly detecting an oncoming automobile on the highway or distinguishing a friend from a stranger in a crowd of people. Roadrunner is now changing the game.

On Saturday, Los Alamos researchers used PetaVision to model more than a billion visual neurons surpassing the scale of 1 quadrillion computations a second (a petaflop/s). On Monday scientists used PetaVision to reach a new computing performance record of 1.144 petaflop/s. The achievement throws open the door to eventually achieving human-like cognitive performance in electronic computers. PetaVision only requires single precision arithmetic, whereas the official LINPACK code used to officially verify Roadrunner's speed uses double precision arithmetic.

"Roadrunner ushers in a new era for science at Los Alamos National Laboratory," said Terry Wallace, associate director for Science, Technology and Engineering at Los Alamos. "Just a week after formal introduction of the machine to the world, we are already doing computational tasks that existed only in the realm of imagination a year ago."

Based on the results of PetaVision's inaugural trials, Los Alamos researchers believe they can study in real time the entire human visual cortex—arguably a human being's most important sensory apparatus.

The ability to achieve human levels of cognitive performance on a digital computer could lead to important insights and revolutionary technological applications. Such applications include "smart" cameras that can recognize danger or an autopilot system for automobiles that could take over for incapacitated drivers in complex situations such as navigating dense urban traffic.

Los Alamos National Laboratory's computation science team working with Roadrunner includes: Craig Rasmussen, Charles Ferenbaugh, Sriram Swaminarayan, Pallab Datta, all of Los Alamos; and Cornell Wright of IBM.

The PetaVision Synthetic Cognition team responsible for the theory and codes run on Roadrunner includes: Luis Bettencourt, Garrett Kenyon, Ilya Nemenman, John George, Steven Brumby, Kevin Sanbonmatsu, and John Galbraith, all of Los Alamos; Steven Zuker of Yale University; and James DiCarlo from Massachusetts Institute of Technology.

The Roadrunner is the world's first supercomputer to achieve sustained operating performance speeds of one petaflop/s. In partnership with Los Alamos and the National Nuclear Security Administration, Roadrunner was built by IBM and will be housed at Los Alamos National Laboratory, where it will be used to perform calculations that will vastly improve the nation's ability to certify that the United States nuclear weapons stockpile is reliable without conducting underground nuclear tests. Roadrunner also will be used for science and engineering such as energy research, understanding dark energy and dark matter, materials properties and response, understanding complex neural and biological systems, and biomedical applications.

Roadrunner was built using commercially available hardware, including aspects of commercial game console technologies. Roadrunner has a unique hybrid design comprised of nodes containing two AMD OpteronTM dual-core processors plus four PowerXCell 8iTM processors used as computational accelerators. The accelerators are a special IBM-developed variant of the Cell processors used in the Sony PlayStation® 3. Roadrunner uses a Linux operating system. The project's total cost is approximately $120 million.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>