A new coupling method for simulating combustion processes

Using DEISA research infrastructure the researchers have developed a new method for simulating combustion processes that will have a real and practical impact on a number of industrial applications.

Combustion is involved in more than 80% of primary energy conversion processes worldwide. It is used, for example, in aeronautical and ground transportation, waste incineration and in various other industries in which burners and engines are required.

Optimization of burners has led to increased levels of complexity and design innovation. This very complexity increases the likelihood that the burners will malfunction, for example through combustion instabilities. Because the developments of industrial burner prototypes can be very expensive, numerical simulation of combustion processes has become compulsory.

Various different methods exist for performing these simulations. The most recent is called Large Eddy Simulation (LES), and can be viewed as an intermediate technique between direct numerical simulation and classical modelization. Under this approach, larger turbulent motions of the flow field are explicitly computed and resolved, whereas the effects of the smaller ones are only modelled.

To gain a better insight into the full process, the researchers of the FOCUS group have developed an original approach. This proposed approach takes advantage of an efficient coupling between an LES solver and codes devoted to radiative heat transfers, where data exchanges occur at time intervals controlled by the physical times of each phenomenon.

“This project is innovative both from a theoretical point of view and in terms of the numerical aspects, with the development of new models in state-of-the-art simulations”, says Olivier Gicquel, a researcher at the EM2C laboratory and one of the leaders of the FOCUS project.

Numerical simulations of turbulent reacting flows including pollutant formation and radiative heat transfers require not only well-adapted models, but also large computational resources. Research infrastructures like DEISA are therefore very much needed in this area.

More information on the FOCUS project available at http://www.deisa.org/press/FOCUS.pdf

Media Contact

Kirsti Turtiainen alfa

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors