Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new coupling method for simulating combustion processes

18.03.2008
The FOCUS project was carried out between 2005 and 2007 by Olivier Gicquel, his research team at the EM2C laboratory of the Ecole Centrale of Paris, and the IDRIS team at CNRS in France.

Using DEISA research infrastructure the researchers have developed a new method for simulating combustion processes that will have a real and practical impact on a number of industrial applications.

Combustion is involved in more than 80% of primary energy conversion processes worldwide. It is used, for example, in aeronautical and ground transportation, waste incineration and in various other industries in which burners and engines are required.

Optimization of burners has led to increased levels of complexity and design innovation. This very complexity increases the likelihood that the burners will malfunction, for example through combustion instabilities. Because the developments of industrial burner prototypes can be very expensive, numerical simulation of combustion processes has become compulsory.

Various different methods exist for performing these simulations. The most recent is called Large Eddy Simulation (LES), and can be viewed as an intermediate technique between direct numerical simulation and classical modelization. Under this approach, larger turbulent motions of the flow field are explicitly computed and resolved, whereas the effects of the smaller ones are only modelled.

To gain a better insight into the full process, the researchers of the FOCUS group have developed an original approach. This proposed approach takes advantage of an efficient coupling between an LES solver and codes devoted to radiative heat transfers, where data exchanges occur at time intervals controlled by the physical times of each phenomenon.

“This project is innovative both from a theoretical point of view and in terms of the numerical aspects, with the development of new models in state-of-the-art simulations”, says Olivier Gicquel, a researcher at the EM2C laboratory and one of the leaders of the FOCUS project.

Numerical simulations of turbulent reacting flows including pollutant formation and radiative heat transfers require not only well-adapted models, but also large computational resources. Research infrastructures like DEISA are therefore very much needed in this area.

More information on the FOCUS project available at http://www.deisa.org/press/FOCUS.pdf

Kirsti Turtiainen | alfa
Further information:
http://www.deisa.org/press/FOCUS.pdf

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>