Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Palpable computing: a taste of things to come

21.01.2008
“Palpable computing”, a term coined by Morten Kyng, a researcher at the University of Aarhus in Denmark, refers to pervasive computer technology that is also tangible and comprehensible to its users.

Ubiquitous computing, in the traditional sense, is based on the vision of making the computers invisible, Kyng suggests. “The problem is that when the technology is invisible you can’t see what it is doing, how it functions or comprehend it.”

Anyone who has tried to connect their mobile phone to their laptop can attest to that. But while the invisibility of ubiquitous computing technology may be a mere inconvenience for many, in some cases it can be a serious, even life-threatening problem. A breakdown in communications that cannot be quickly fixed during a natural disaster can cost lives, as too can interoperability failures in hospital equipment.

By making the technology visible when it needs to be and comprehensible all the time, palpable computing reduces the complications of using the technology, while opening the door to developers creating new applications more easily.

The vision of ubiquitous computing has focused on tools honed through use over time and well suited to what they are designed to do, comments Kyng. “The problems arise when you want or need to do something new or different from what the designers intended: the user is not really in control,” he adds.

Over the last four years, Kyng has led a team of more than a hundred researchers from across Europe working on making palpable computing a reality. They have developed software architecture for palpable computing systems as well as a toolbox for developers to create applications that has recently been made available under an open source licence. The researchers, who received EU funding in the PalCom project, also developed several test platforms that have served to highlight the benefits of their approach.

One of them was used when the Tall Ships’ Races – the world’s biggest competition for sailing ships – visited Aarhus in July 2007. The platform enabled police and fire fighters to interact with a three-dimensional (3D) workspace of the Aarhus harbour and its surroundings, displaying the location of key personnel, cars, ships and equipment to give a general overview of what was going on.

“Large-scale events, such as the Tall Ships’ Races, can be very hard to gain an overview of. With a million visitors and a huge area, it is challenging to monitor every critical spot. In my opinion, PalCom’s technology has enormous potential – not only for events [like this] but also for monitoring major accident scenes,” notes Aarhus fire chief Jakob Andersen.

A second test platform was created to enhance therapy for disabled children, while a third was designed to help landscape architects visualise the location and assess the visual impact of large development projects (wind farms, industrial buildings, etc.).

The system involves a camera, placed on the roof of a car, connected with a laptop running an advanced 3D-visualisation programme which provides landscape architects with a much more precise indication of where a new building will be located and its impact on the surrounding landscape as they drive around.

Key markets: emergency response and healthcare

“The potential uses for palpable computing are diverse, although initially I think the key markets will be in areas, such as emergency response and healthcare, where there is an urgent need for increasingly more efficient and effective technology,” Kyng says.

The University of Aarhus and several other project partners are concentrating on the development of applications using PalCom’s architecture in those fields. Kyng’s team, for example, is applying the technology to help women through pregnancies and to improve the treatment of hip-replacement patients. One palpable computing system being developed to enhance post-surgery monitoring will allow hip patients to leave the hospital 24 hours after surgery, he estimates, rather than the current three or four days.

The PalCom coordinator notes that the trial systems have elicited considerable interest and expects the open source release of the toolbox to lead to new applications. “Ultimately, success in the marketplace will drive the technology forward,” he says.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>