Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Translocation risks revealed

Scientists develop techniques to avoid repeat of red squirrel catastrophe

DISASTROUS disease outbreaks like the one which led to the decimation of the red squirrel in Britain can now be avoided through the implementation of new preventive measures developed by UK scientists.

Researchers at the Zoological Society of London (ZSL) looked at the disease risks associated with moving wild animals (translocation), and worked out the key baseline data required to predict the outcome of wild animals being moved around.

Translocations are being increasingly used to conserve species whose numbers have plummeted as a result of habitat degradation and other human factors. Climate change is likely to lead to the need for many more translocations to ensure animals are located in favourable habitat.

There are numerous historical examples of translocations introducing disease to native populations. Following the accidental introduction of the rinderpest virus to Africa with translocated cattle in the 1890s the number of wildebeest in the Serengeti fell dramatically, leading to a subsequent fall in two important predator species - lion and hyena.

In the UK the introduction of the squirrelpox virus with the North American grey squirrel in the late 19th century caused fatal disease in red squirrels, contributing to their mass decline.

At the planning stages of the proposed translocation of Eurasian cranes (Grus grus) from Germany to the UK, called The Great Crane Project, the researchers used their new analytical method to assess the risk of disease.

The research team investigated the parasites harboured by the source population of cranes in Germany, captive cranes held in the UK, and the existing small population of cranes present in the UK. From those investigations they identified 24 potential translocation hazards. The threat of these disease hazards, which included nematode worms and avian influenza, was ranked.

By applying the kind of risk analysis already used to estimate risks to humans from sources as diverse as car accidents, radioactivity and cancer, the team investigated the probability and magnitude of effects from the 24 disease hazards at all stages of the translocation route including those triggered by stressors such as capture, those induced by parasites brought into the UK and those by parasites harboured by native species at the destination. This analysis has guided careful disease risk planning and implementation throughout the Great Crane Project and contributed to its current success.

Lead author Tony Sainsbury said: "This project has demonstrated that we have a feasible method to assess the risks of disease to translocations before they take place, which is very important if we are to avoid a catastrophe like that which has virtually wiped out the red squirrel in the UK."

This new method of risk analysis is now used on all reintroduction programmes in Natural England's Species Recovery Programme. This approach is necessary whether the origin of the species are ex-situ populations destined for re-introductions, re-introduced populations or wild populations. This risk analysis process allows Natural England to adequately assess the impact of species recovery programmes on wild animal health and disease and to manage re-introduction programmes appropriately now and for any future re-introductions.

Tony Sainsbury said "The fundamental difficulties in analysing the risk of disease associated with translocation of wild animals are that knowledge of the number, identity and distribution of parasites and their ability to induce disease is limited and requires further research. In the meantime post-release health monitoring remains very important.

Their research is published online today (26.4.12) in the journal Conservation Biology.

Notes to editors:

Analyzing disease risks associated with translocations is published online today in Conservation Biology.

Translocations which cross ecological (e.g.habitat) and geographic (e.g. mountain ranges, seas) boundaries are most risky because the translocated wild animals are more likely to make contact with non-native parasites to which they are immunologically naive, and therefore the authors defined parasites as hazards where they were novel to the host.

Eurasian cranes - also known as common cranes - had all but died out in Britain due to hunting, egg collection and changes in land use, with only one small population in East Anglia remaining. Conservation organisations planned a reintroduction of birds from Germany to the Somerset Levels to establish a self-sustaining wild population as part of the Great Crane Project. In 2008 ZSL were asked to perform the disease risk analysis. The disease risk analysis was very important in ensuring the success of the project to date and ensuring disease risks were minimised.

'Parasite' is used as an all encompassing term to cover infectious agents such as viruses, bacteria, fungi, protozoa, helminths, and ectoparasites.

The study was funded by ZSL, Natural England and RSPB, with assistance from the WWT.

The Great Crane Project is a partnership between the Wildfowl & Wetlands Trust, RSPB and Pensthorpe Conservation Trust, with major funding from Viridor Credits Environmental Company. Our aim is to restore healthy populations of wild cranes throughout the UK, so that people can once again experience these beautiful birds.

Founded in 1826, the Zoological Society of London (ZSL) is an international scientific, conservation and educational charity: the key role is the conservation of animals and their habitats. The Society runs ZSL London Zoo and ZSL Whipsnade Zoo, carries out scientific research in the Institute of Zoology and is actively involved in field conservation in other countries worldwide. For further information please visit

Since its founding in 1889, the RSPB has grown into a wildlife conservation charity with more than a million members. Its work is driven by a passionate belief that we all have a responsibility to protect birds and the environment. Bird populations reflect the health of the planet on which our future depends.

WWT is a leading UK conservation organisation saving wetlands for wildlife and people across the world. With over 60 years experience of wetland conservation, WWT is committed to the protection of wetlands and all that depend on them for survival.

WWT operates nine wetland visitor centres in the UK and manages over 2,000 hectares, including seven Sites of Special Scientific Interest (SSSI), one Area of Special Scientific Interest (ASSI), six Special Protection Areas (SPA), Part of one Marine Nature Reserve and six Ramsar sites, supporting over 200,000 waterbirds. WWT aviculturalists' extensive hand-rearing expertise is a vital part of the Great Crane Project.

Contact the WWT press office (01453 891144/ 07823 530 756) for a behind-the-scenes look at how the risk analysis is being implemented at 'crane school' in Slimbridge, where the 2012 chicks are currently hatching.

Emma Edwards/Smita Chandra | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>