Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting enforcement where needed most in Africa's heart of biodiversity

27.03.2014

Data-driven analysis will maximize return-on-investment in protecting wildlife and wild lands

Scientists seeking a more efficient way of protecting the heart of Africa's wildlife—the Greater Virunga Landscape—have developed a method to make the most of limited enforcement resources, according to a new study by the Wildlife Conservation Society, the University of Queensland, Imperial College London, and the Uganda Wildlife Authority.


Park guards on patrol in the Greater Virunga Landscape. Scientists seeking a more efficient way of protecting the heart of Africa's wildlife have developed a method to make the most of limited enforcement resources, specifically by channeling data on wildlife sightings and park guard patrolling routes into spatial planning software. Conservationists hope that this cost-effective method for maximizing the deterrence effect of patrolling will help protect Africa's threatened wildlife from poaching and other illegal activities.

Credit: A. Plumptre/Wildlife Conservation Society

By channeling data on wildlife sightings and park guard patrolling routes into spatial planning software, conservationists have devised a cost-effective method for maximizing the deterrence effect of patrolling to protect Africa's threatened wildlife from poaching and other illegal activities.

The enforcement-targeting method is described in a study appearing in the current edition of the Journal of Applied Ecology and is freely available online.

"The Greater Virunga Landscape contains many natural wonders, but resources for enforcement across this huge area are limited," said Dr. Andrew Plumptre, lead author of the study and Director of the Wildlife Conservation Society's Albertine Rift Program. "Our spatial analysis allows us to identify weaknesses in current efforts, which we can use to redirect enforcement and increase efficiency and conservation impact."

Stretching through Uganda, Rwanda, and the Democratic Republic of Congo, the Greater Virunga Landscape is one of the most biodiverse places on Earth and is home to all of the world's mountain gorilla populations. Much of the region's mountains, forests, lakes, and savannas are contained in a total of 13 protected areas covering 13,800 square kilometers. The region also contains populations of chimpanzees, elephants, hippopotamus, lions, and many other species.

The authors of the study conducted their analysis by first determining the distribution of key species and habitats. Data on the distribution of threats was then added, followed by estimates of current patrol effort and the cost of patrolling parks, protected areas, and other wildlife-rich regions effectively. All data layers were then used to conduct a spatial prioritization to minimize the cost of patrols and maximize the protection of wildlife species.

What the authors found was that only 22 percent of the Greater Virunga Landscape is being effectively patrolled at present. "The key problem is trying to ascertain where to send patrols to make them effective," said Dr. James Watson, who holds a joint WCS-University of Queensland position. "Our research has shown that existing patrols are not frequent enough to be effective at deterring poaching and other illegal activities beyond 3 kilometers from a patrol post."

"We discovered that careful planning of patrol activity can increase its effectiveness while reducing costs by up to 63 percent," added Prof. Hugh Possingham, director of the ARC Centre of Excellence for Environmental Decisions.

In addition to helping wildlife managers and park authorities to redirect enforcement efforts into areas requiring protection, the method—the authors say—will also help reduce the cost of achieving conservation goals.

"Knowing where to put your enforcement efforts to make the most difference in protecting wildlife and natural resources is a huge advantage for conservationists," said Mr. Aggrey Rwetsiba, Senior Coordinator Ecological Monitoring and Research at the Uganda Wildlife Authority. "The method offered here can improve patrol coverage and increase deterrence in this vital region of Africa."

###

The authors are: Andrew Plumptre of the Wildlife Conservation Society; Richard Fuller of the University of Queensland; Aggrey Rwetsiba of the Uganda Wildlife Authority; Fredrick Wanyama of the Uganda Wildlife Authority; Deo Kujirakwinja of the Wildlife Conservation Society; Margaret Driciru of the Wildlife Conservation Society; Grace Nangendo of the Wildlife Conservation Society; James Watson of the Wildlife Conservation Society; and Hugh Possingham of the University of Queensland and Imperial College.

This analysis was funded by the Fairfield Osborn Memorial Fund, The University of Queensland and the Wildlife Conservation Society. Funding that supported data collection and analysis for this study came from the John D. and Catherine T. MacArthur Foundation, the US Fish and Wildlife Service Elephant and Great Ape Conservation Funds, US State Department, US Agency for International Development, and Wildlife Conservation Society.

John Delaney | EurekAlert!

Further reports about: Conservation Wildlife activities populations savannas species

More articles from Ecology, The Environment and Conservation:

nachricht Roadmap for better protection of Borneo’s cats and small carnivores
30.05.2016 | Forschungsverbund Berlin e.V.

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>