Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting enforcement where needed most in Africa's heart of biodiversity

27.03.2014

Data-driven analysis will maximize return-on-investment in protecting wildlife and wild lands

Scientists seeking a more efficient way of protecting the heart of Africa's wildlife—the Greater Virunga Landscape—have developed a method to make the most of limited enforcement resources, according to a new study by the Wildlife Conservation Society, the University of Queensland, Imperial College London, and the Uganda Wildlife Authority.


Park guards on patrol in the Greater Virunga Landscape. Scientists seeking a more efficient way of protecting the heart of Africa's wildlife have developed a method to make the most of limited enforcement resources, specifically by channeling data on wildlife sightings and park guard patrolling routes into spatial planning software. Conservationists hope that this cost-effective method for maximizing the deterrence effect of patrolling will help protect Africa's threatened wildlife from poaching and other illegal activities.

Credit: A. Plumptre/Wildlife Conservation Society

By channeling data on wildlife sightings and park guard patrolling routes into spatial planning software, conservationists have devised a cost-effective method for maximizing the deterrence effect of patrolling to protect Africa's threatened wildlife from poaching and other illegal activities.

The enforcement-targeting method is described in a study appearing in the current edition of the Journal of Applied Ecology and is freely available online.

"The Greater Virunga Landscape contains many natural wonders, but resources for enforcement across this huge area are limited," said Dr. Andrew Plumptre, lead author of the study and Director of the Wildlife Conservation Society's Albertine Rift Program. "Our spatial analysis allows us to identify weaknesses in current efforts, which we can use to redirect enforcement and increase efficiency and conservation impact."

Stretching through Uganda, Rwanda, and the Democratic Republic of Congo, the Greater Virunga Landscape is one of the most biodiverse places on Earth and is home to all of the world's mountain gorilla populations. Much of the region's mountains, forests, lakes, and savannas are contained in a total of 13 protected areas covering 13,800 square kilometers. The region also contains populations of chimpanzees, elephants, hippopotamus, lions, and many other species.

The authors of the study conducted their analysis by first determining the distribution of key species and habitats. Data on the distribution of threats was then added, followed by estimates of current patrol effort and the cost of patrolling parks, protected areas, and other wildlife-rich regions effectively. All data layers were then used to conduct a spatial prioritization to minimize the cost of patrols and maximize the protection of wildlife species.

What the authors found was that only 22 percent of the Greater Virunga Landscape is being effectively patrolled at present. "The key problem is trying to ascertain where to send patrols to make them effective," said Dr. James Watson, who holds a joint WCS-University of Queensland position. "Our research has shown that existing patrols are not frequent enough to be effective at deterring poaching and other illegal activities beyond 3 kilometers from a patrol post."

"We discovered that careful planning of patrol activity can increase its effectiveness while reducing costs by up to 63 percent," added Prof. Hugh Possingham, director of the ARC Centre of Excellence for Environmental Decisions.

In addition to helping wildlife managers and park authorities to redirect enforcement efforts into areas requiring protection, the method—the authors say—will also help reduce the cost of achieving conservation goals.

"Knowing where to put your enforcement efforts to make the most difference in protecting wildlife and natural resources is a huge advantage for conservationists," said Mr. Aggrey Rwetsiba, Senior Coordinator Ecological Monitoring and Research at the Uganda Wildlife Authority. "The method offered here can improve patrol coverage and increase deterrence in this vital region of Africa."

###

The authors are: Andrew Plumptre of the Wildlife Conservation Society; Richard Fuller of the University of Queensland; Aggrey Rwetsiba of the Uganda Wildlife Authority; Fredrick Wanyama of the Uganda Wildlife Authority; Deo Kujirakwinja of the Wildlife Conservation Society; Margaret Driciru of the Wildlife Conservation Society; Grace Nangendo of the Wildlife Conservation Society; James Watson of the Wildlife Conservation Society; and Hugh Possingham of the University of Queensland and Imperial College.

This analysis was funded by the Fairfield Osborn Memorial Fund, The University of Queensland and the Wildlife Conservation Society. Funding that supported data collection and analysis for this study came from the John D. and Catherine T. MacArthur Foundation, the US Fish and Wildlife Service Elephant and Great Ape Conservation Funds, US State Department, US Agency for International Development, and Wildlife Conservation Society.

John Delaney | EurekAlert!

Further reports about: Conservation Wildlife activities populations savannas species

More articles from Ecology, The Environment and Conservation:

nachricht The causes of soil consumption
14.06.2016 | Schweizerischer Nationalfonds SNF

nachricht Fishing prohibitions produce more sharks along with problems for fishing communities
09.06.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

New technology helps ID aggressive early breast cancer

01.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>