Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Puts Freshwater Biodiversity on the Map for Planners and Policymakers

18.10.2013
When it comes to economic growth and environmental impacts, it can seem like Newton’s third law of motion is the rule — for every action, there is an equal and opposite reaction — and that in most cases, the economy prospers and the environment suffers.

A team of UW-Madison researchers is hoping to help change that narrative and add a little ecology to economic decision making by forecasting how future policies regarding urban development and agricultural cultivation may impact aquatic ecosystems, which harbor astounding amounts of biodiversity and provide humans with vital goods and services.

“The idea is to see what future land use changes may look like under different policies, and think about where potential threats to freshwater would be most severe,” says Sebastián Martinuzzi, a post-doctoral researcher at the University of Wisconsin-Madison. “We are not trying to predict the ‘true’ future, but rather to visualize potential economic trends and their environmental consequences.”

Martinuzzi, who works in Professor Volker Radeloff’s lab in the Department of Forest and Wildlife Ecology, is lead author of a report entitled “Land Use Change and Freshwater Conservation,” published Oct. 15 in the journal “Global Change Biology.” In the study, a team of UW ecologists and collaborating economists mapped out various economic development scenarios and connected them to impacts on freshwater species diversity across the United States.

Every acre of crops put into production and each paved cul-de-sac in a new subdivision can change how water moves across the land, its temperature, and the levels of sediment and pollutants flowing into downstream freshwater ecosystems.

Using computer modeling and GIS mapping, Martinuzzi and the team developed four different scenarios to help illustrate future human endeavors. In their models, the researchers found that the news isn’t all bad. Crop cover is actually projected to go down under certain policy scenarios in the Midwest, which could signal an opportunity to purchase fallow fields for conservation purposes. However, in places like California and the southeastern U.S., urbanization is likely going to be a big stressor that could portend a tough future for fishes and amphibians.

The study was also able to put a number on the give-and-take of economic and ecological considerations. For example, under a “business as usual” scenario where policies remain as they are today, 34 percent of watersheds are expected to be impacted by urban development while, in an “urban containment” scenario, only 13 percent of watersheds would be affected as the spread of urban areas is minimized.

“At a minimum, we hope this can help policy makers or planners think about ways we could minimize the impact from future land development,” says Stephanie Januchowski-Hartley, from UW-Madison’s Center for Limnology and a contributing author of the paper. “If a certain amount [of urban development or crop cover] is going to push 10 or 20 percent of freshwater ecosystems beyond a healthy threshold, then we, as a society, have to start asking ourselves if that is something that we’re all willing to live with.”

Adam Hinterthuer, 608-890-2187, hinterthuer@wisc.edu

Adam Hinterthuer | Newswise
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>