Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Puts Freshwater Biodiversity on the Map for Planners and Policymakers

18.10.2013
When it comes to economic growth and environmental impacts, it can seem like Newton’s third law of motion is the rule — for every action, there is an equal and opposite reaction — and that in most cases, the economy prospers and the environment suffers.

A team of UW-Madison researchers is hoping to help change that narrative and add a little ecology to economic decision making by forecasting how future policies regarding urban development and agricultural cultivation may impact aquatic ecosystems, which harbor astounding amounts of biodiversity and provide humans with vital goods and services.

“The idea is to see what future land use changes may look like under different policies, and think about where potential threats to freshwater would be most severe,” says Sebastián Martinuzzi, a post-doctoral researcher at the University of Wisconsin-Madison. “We are not trying to predict the ‘true’ future, but rather to visualize potential economic trends and their environmental consequences.”

Martinuzzi, who works in Professor Volker Radeloff’s lab in the Department of Forest and Wildlife Ecology, is lead author of a report entitled “Land Use Change and Freshwater Conservation,” published Oct. 15 in the journal “Global Change Biology.” In the study, a team of UW ecologists and collaborating economists mapped out various economic development scenarios and connected them to impacts on freshwater species diversity across the United States.

Every acre of crops put into production and each paved cul-de-sac in a new subdivision can change how water moves across the land, its temperature, and the levels of sediment and pollutants flowing into downstream freshwater ecosystems.

Using computer modeling and GIS mapping, Martinuzzi and the team developed four different scenarios to help illustrate future human endeavors. In their models, the researchers found that the news isn’t all bad. Crop cover is actually projected to go down under certain policy scenarios in the Midwest, which could signal an opportunity to purchase fallow fields for conservation purposes. However, in places like California and the southeastern U.S., urbanization is likely going to be a big stressor that could portend a tough future for fishes and amphibians.

The study was also able to put a number on the give-and-take of economic and ecological considerations. For example, under a “business as usual” scenario where policies remain as they are today, 34 percent of watersheds are expected to be impacted by urban development while, in an “urban containment” scenario, only 13 percent of watersheds would be affected as the spread of urban areas is minimized.

“At a minimum, we hope this can help policy makers or planners think about ways we could minimize the impact from future land development,” says Stephanie Januchowski-Hartley, from UW-Madison’s Center for Limnology and a contributing author of the paper. “If a certain amount [of urban development or crop cover] is going to push 10 or 20 percent of freshwater ecosystems beyond a healthy threshold, then we, as a society, have to start asking ourselves if that is something that we’re all willing to live with.”

Adam Hinterthuer, 608-890-2187, hinterthuer@wisc.edu

Adam Hinterthuer | Newswise
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>