Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Test Hearing in Bristol Bay Beluga Whale Population

15.05.2014

First published study on hearing in wild cetaceans

The ocean is an increasingly industrialized space. Shipping, fishing, and recreational vessels, oil and gas exploration and other human activities all increase noise levels in the ocean and make it more difficult for marine mammals to hear and potentially diminish their range of hearing.


Two Bristol Bay beluga whales fluking. The research team captured and tested hearing in seven Bristol Bay beluga whales, one of six subpopulations of beluga whales in the U.S. (NMFS permit number 14610) (Photo courtesy of Alaska Dept. of Fish and Game)

“Hearing is the main way marine mammals find their way around the ocean,” said Aran Mooney, a biologist at Woods Hole Oceanographic Institution (WHOI). It’s important to know whether and to what extent human activity is negatively impacting them.

But how can we get marine mammals living in the wild to tell us what they’re able to hear?

“Same way we do it with human infants,” said Mooney. “You play a sound, then you measure the brain's response to the sound.”  

Though Mooney makes it sound easy enough, he and his colleagues are the first to publish a study of hearing in wild marine mammals, with multiple marine mammals. The paper, “Baseline Hearing Abilities and Variability in Wild Beluga Whales (Delphinapterus leucas)” was published today in The Journal of Experimental Biology, on May 14.

In addition to Mooney, the research team included the paper’s lead author Manuel Castellote, from the Alaska Fisheries Science Center, which is part of the National Marine Fisheries Service, and the North Gulf Oceanic Society, and their colleagues from Alaska Department of Fish and Game, Alaska SeaLife Center, and the Georgia Aquarium.

The researchers worked over a two week period in southwest Alaska during the summer of 2012, capturing and testing seven Bristol Bay beluga whales, one of six subpopulations of beluga whales in the U.S. Enabling this study are recent advances in portable field testing equipment, rugged enough for field work. To conduct their hearing tests, the team temporarily maintained the individual animals as part of physical health exams. They used suction cups to attach a small speaker to its jaw—which in whales and dolphins conducts sound to both ears—and placed sensors on the animal’s head and back. 

 “The advantage is that it’s really fast,” said Mooney. “You can get one of these data points in about two or three minutes. A whole hearing range takes about half an hour.”

In human populations, there is variability in our hearing ability: older people don’t hear as well as younger people; males don’t hear high frequencies as well as females. But in the tested beluga population, there was surprisingly little variation.

“The bottom line is they all hear pretty well,” said Mooney. “Limitations to our study were that we had just seven animals who live in a pretty quiet environment without a lot of noise exposure. These might conserve their high-frequency better than humans, which makes sense; they need it for echolocation, and if they lose that, then they could lose of their abilities to find food and communicate.”

That this kind of study has never been reported before is an indication of the challenge of capturing and testing wild marine mammals.

“It's a bit of a project. It takes a lot of people and the right environment. But we've also shown that if you have the right setup it's easy to do,” said Mooney.

The team used three or four small inflatable boats and worked with Alaskan natives expert in spotting belugas, which have no dorsal fin and make only the smallest of ripples at the surface when they breathe. The guide the beluga into shallow water – shallow enough to stand in -- until they can gently capture the 8- 12-foot animals with a hoop and net.

“Then the animal won't try and swim away, once they feel contained, they're not going to fight,” said Mooney. “They will hang out there. Then you put a belly band stretcher underneath them which has little holes for the flippers. Then it goes over the belly, and that holds the animal during the test.”

The team caught and measure three females and four males and essentially gave them all physicals. In addition to the hearing test, they did ultrasounds on each of the animals and collected saliva or mucous from the blow hole to look for stress hormones and took a core of the blubber to look for PCBs and other organic compounds that may build up in the fats. Together, the data gives researchers a baseline of the animals’ health and a way to measure change in the population’s health over time and as environmental conditions change.

While hearing in the tested animals was good, the researchers note that human-caused ocean noise is believed to be a chronic stressor and has been identified as a threat to other populations of belugas. The increase in human activities in Arctic ecosystems as a result of sea ice loss is creating a special concern about increasing ocean noise in the Arctic and its potential impacts on whales and dolphins.  They note that “expanding our knowledge of beluga hearing is key to an appropriate conservation management effort.”

Another driver for understanding their health and hearing now is a proposed mineral exploration and mining project in the area.  The Pebble Mine project would exploit large deposits of copper, gold and molybdenum in the region. “It's not clear if it will directly affect the hearing of the belugas, but it will affect the ecology of what's up there, so the baseline health information is key,” said Mooney.

The results of this hearing study may also help validate studies of hearing in belugas in captivity .

The team hopes to return to the field this summer to test a larger number of animals and attach temporary data-logging tags to learn more about their foraging, diving, and social behaviors.

Funding for the project came from the Georgia Aquarium and the National Marine Mammal Laboratory of the Alaska Fisheries Science Center (NMML/AFSC). Field work also supported by National Marine Fisheries Service Alaska Regional Office (NMFS AKR), WHOI Arctic Research Initiative, WHOI Ocean Life Institute, U.S. Fish and Wildlife Service, Bristol Bay Native Association, Alaska Sea Life Center, Shedd Aquarium and Mystic Aquarium and the Office of Naval Research.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit www.whoi.edu.

Originally published: May 14, 2014

WHOI Media Office | Eurek Alert!
Further information:
http://www.whoi.edu/news-release/beluga-hearing

Further reports about: Aquarium Arctic Fisheries Marine Population WHOI Whale environment hearing

More articles from Ecology, The Environment and Conservation:

nachricht Savannahs help to slow climate change
22.05.2015 | Max-Planck-Institut für Biogeochemie

nachricht Surviving Harsh Environments Becomes a Death-Trap for Specialist Corals
21.05.2015 | University of Southampton

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>