Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Test Hearing in Bristol Bay Beluga Whale Population


First published study on hearing in wild cetaceans

The ocean is an increasingly industrialized space. Shipping, fishing, and recreational vessels, oil and gas exploration and other human activities all increase noise levels in the ocean and make it more difficult for marine mammals to hear and potentially diminish their range of hearing.

Two Bristol Bay beluga whales fluking. The research team captured and tested hearing in seven Bristol Bay beluga whales, one of six subpopulations of beluga whales in the U.S. (NMFS permit number 14610) (Photo courtesy of Alaska Dept. of Fish and Game)

“Hearing is the main way marine mammals find their way around the ocean,” said Aran Mooney, a biologist at Woods Hole Oceanographic Institution (WHOI). It’s important to know whether and to what extent human activity is negatively impacting them.

But how can we get marine mammals living in the wild to tell us what they’re able to hear?

“Same way we do it with human infants,” said Mooney. “You play a sound, then you measure the brain's response to the sound.”  

Though Mooney makes it sound easy enough, he and his colleagues are the first to publish a study of hearing in wild marine mammals, with multiple marine mammals. The paper, “Baseline Hearing Abilities and Variability in Wild Beluga Whales (Delphinapterus leucas)” was published today in The Journal of Experimental Biology, on May 14.

In addition to Mooney, the research team included the paper’s lead author Manuel Castellote, from the Alaska Fisheries Science Center, which is part of the National Marine Fisheries Service, and the North Gulf Oceanic Society, and their colleagues from Alaska Department of Fish and Game, Alaska SeaLife Center, and the Georgia Aquarium.

The researchers worked over a two week period in southwest Alaska during the summer of 2012, capturing and testing seven Bristol Bay beluga whales, one of six subpopulations of beluga whales in the U.S. Enabling this study are recent advances in portable field testing equipment, rugged enough for field work. To conduct their hearing tests, the team temporarily maintained the individual animals as part of physical health exams. They used suction cups to attach a small speaker to its jaw—which in whales and dolphins conducts sound to both ears—and placed sensors on the animal’s head and back. 

 “The advantage is that it’s really fast,” said Mooney. “You can get one of these data points in about two or three minutes. A whole hearing range takes about half an hour.”

In human populations, there is variability in our hearing ability: older people don’t hear as well as younger people; males don’t hear high frequencies as well as females. But in the tested beluga population, there was surprisingly little variation.

“The bottom line is they all hear pretty well,” said Mooney. “Limitations to our study were that we had just seven animals who live in a pretty quiet environment without a lot of noise exposure. These might conserve their high-frequency better than humans, which makes sense; they need it for echolocation, and if they lose that, then they could lose of their abilities to find food and communicate.”

That this kind of study has never been reported before is an indication of the challenge of capturing and testing wild marine mammals.

“It's a bit of a project. It takes a lot of people and the right environment. But we've also shown that if you have the right setup it's easy to do,” said Mooney.

The team used three or four small inflatable boats and worked with Alaskan natives expert in spotting belugas, which have no dorsal fin and make only the smallest of ripples at the surface when they breathe. The guide the beluga into shallow water – shallow enough to stand in -- until they can gently capture the 8- 12-foot animals with a hoop and net.

“Then the animal won't try and swim away, once they feel contained, they're not going to fight,” said Mooney. “They will hang out there. Then you put a belly band stretcher underneath them which has little holes for the flippers. Then it goes over the belly, and that holds the animal during the test.”

The team caught and measure three females and four males and essentially gave them all physicals. In addition to the hearing test, they did ultrasounds on each of the animals and collected saliva or mucous from the blow hole to look for stress hormones and took a core of the blubber to look for PCBs and other organic compounds that may build up in the fats. Together, the data gives researchers a baseline of the animals’ health and a way to measure change in the population’s health over time and as environmental conditions change.

While hearing in the tested animals was good, the researchers note that human-caused ocean noise is believed to be a chronic stressor and has been identified as a threat to other populations of belugas. The increase in human activities in Arctic ecosystems as a result of sea ice loss is creating a special concern about increasing ocean noise in the Arctic and its potential impacts on whales and dolphins.  They note that “expanding our knowledge of beluga hearing is key to an appropriate conservation management effort.”

Another driver for understanding their health and hearing now is a proposed mineral exploration and mining project in the area.  The Pebble Mine project would exploit large deposits of copper, gold and molybdenum in the region. “It's not clear if it will directly affect the hearing of the belugas, but it will affect the ecology of what's up there, so the baseline health information is key,” said Mooney.

The results of this hearing study may also help validate studies of hearing in belugas in captivity .

The team hopes to return to the field this summer to test a larger number of animals and attach temporary data-logging tags to learn more about their foraging, diving, and social behaviors.

Funding for the project came from the Georgia Aquarium and the National Marine Mammal Laboratory of the Alaska Fisheries Science Center (NMML/AFSC). Field work also supported by National Marine Fisheries Service Alaska Regional Office (NMFS AKR), WHOI Arctic Research Initiative, WHOI Ocean Life Institute, U.S. Fish and Wildlife Service, Bristol Bay Native Association, Alaska Sea Life Center, Shedd Aquarium and Mystic Aquarium and the Office of Naval Research.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit

Originally published: May 14, 2014

WHOI Media Office | Eurek Alert!
Further information:

Further reports about: Aquarium Arctic Fisheries Marine Population WHOI Whale environment hearing

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>