Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival of the selfless - scientists find cheats don’t always prosper

26.05.2006


Selfishness is not necessarily the best survival trait for microorganisms, according to researchers studying the comparative effectiveness of ‘cheating’ and ‘cooperating’ strains of yeast.



Writing in the journal Nature today, the team reports that studies of lab-grown yeast populations suggest the benefits of cheating are eventually counterbalanced by the costs. This contradicts classic evolutionary theory, which states that in a competition for common resources the long-term winner will always be the individual acting selfishly rather than the one working as part of a group.

To test this theory, scientists set up a series of competitions between two strains of yeast. The strains are identical apart from the genes that determine whether they convert energy from resources such as sugar rapidly or if they convert it efficiently.


In one corner were the ‘cooperators’, which produce energy efficiently by taking in sugar slowly and fully converting into energy all that they ingest. This method maximises resources available to the group by avoiding any waste.

Against them were the ‘cheaters’, which produce energy rapidly by quickly taking in all the sugar they can and only partially converting it into energy. While this ensures swift energy production for the individual, it is a wasteful method that reduces resources available for the group as a whole.

The researchers were surprised to find that in a well-mixed population the cooperators were not excluded by the cheats. Further experiments and mathematical modelling established that this is because cheats accumulate toxins as a direct result of taking in resources more quickly than they can digest them, which limits the level of energy they derive from the sugar. This enables the cooperators to hold their own, meaning that the two different strains could coexist over the long-term without either being excluded. Lead researcher Dr Craig MacLean of Imperial College London says:

“This evidence that a cooperative group can resist invasion by exploitative cheats is unexpected and gives us greater insight into how cooperation evolves. This is important because we live in a world in which cooperations exists at every level, from genes working together to build functioning individuals to individuals forming societies.”

The researchers suggest that the ideal organism type would be one that can switch between selfish and efficient metabolism. Dr MacLean adds:

“While microbes are obviously not capable of rational thought, they can change their behaviour rapidly in response to simple environmental cues. The possibility that one type could become both a cheater and a cooperator depending on what’s needed at the time is intriguing. We hope examining social conflict at the level of individual cells will shed more light on this.”

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>