Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study examines future of species extinction, conservation

13.05.2004


Extinction doesn’t just affect the species that disappears - it alters entire communities, changing both how the community as a whole and the individual species within it will respond to environmental degradation, according to results published in the May 13 issue of Nature.



With extinction continuously altering the fates of plants and animals, the researchers say it may be extremely difficult to predict which organisms will be the next to cease existing and that the wisest conservation plan is one that reaches beyond a particular species to protect entire communities.

A pair of researchers from the University of Wisconsin-Madison, interested in understanding what happens when species go extinct, developed mathematical models looking at changes in a community’s tolerance to a particular environmental condition, such as global warming or acid rain.


They found that, as individual species start to disappear, two forces begin to act upon a community, making it either more or less tolerant to the environmental condition.

One of these forces occurs when species disappear in order of their sensitivity to a particular environmental factor, with the least tolerant ones going extinct first. "We know that some species are more sensitive to environmental stressors," says Anthony Ives, a UW-Madison zoology professor and co-author of the Nature paper. "And they often go extinct in order of their sensitivity."

With the disappearance of organisms most vulnerable to a certain condition, such as the increase of nutrients in lake water, the species best suited for that condition are left behind. This ordered extinction, notes Ives, makes the community as a whole more resistant to that environmental pressure and, in a sense, protects it from future degradation.

"One important message is that if we’re going to understand the consequences of extinction, we need to pay attention to order," says Bradley Cardinale, a UW-Madison postdoctoral fellow and also co-author of the recent paper. "If species go extinct in a particular order, it is possible for the surviving community to become more resistant overall."

While this finding may sound like good news, there is a downside: the researchers say that a community’s resistance to an environmental condition can shift over time due to yet another force - changes in food-web interactions resulting from the extinction of individual species.

All species are part of a food web, whether they are predators, prey or even competition. And, when a member of the food web goes extinct, it indirectly alters the livelihood of the survivors, note the researchers.

Ives explains, "Now free from the species that fed on it or competed with it for food, a species may increase in abundance." By increasing in abundance, he adds, the species makes the entire community more tolerant to the environmental pressure.

However, according to the models, the continuous extinction of organisms from a community ultimately dampens the ability of surviving species to compensate, or increase in population size, and, consequently, makes the community less resistant to changes in the environment.

"The loss of species tends to deplete a community’s ability to withstand environmental degradation," says Ives.

Cardinale says that these changes in the food web and their indirect effects on organisms within a community can "change the order of extinction," basically foreshadowing new fates for species. He explains, "A species that seems insignificant now may become important later on once it’s released from predation or competition."

Because of the dynamics of the food web, the researchers say it becomes challenging to determine what species may vanish next due to the forces of extinction. This leads them to suggest a more holistic approach to conservation.

"We can’t just go out and conserve one species," explains Cardinale. "Because we have no idea what species may make the community resistant in the future, we would be most prudent to conserve as many as we can right now."

Emily Carlson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>