Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke open-air experiment results could deflate hopes that forests can alleviate global warming

16.02.2004


A futuristic Duke University simulation of forest growth under the carbon dioxide-enriched atmosphere expected by 2050 does not reinforce the optimism of those who believe trees can absorb that extra CO2 by growing faster, said a spokesman for the experiment.



During seven years of exposure to carbon dioxide concentrations 1½ times higher than today’s, test plots of loblolly pines have indeed boosted their annual growth rates by between 10 and 25 percent, found the researchers. But "the highest responses have been in the driest years, and the effect of CO2 has been much less in normal and wet years," said William Schlesinger, a professor of biogeochemistry and dean of Duke’s Nicholas School of the Environment and Earth Sciences.

These counterintuitive findings suggest that nitrogen deficiencies common to forest soils in the Southeastern United States may limit the abilities of loblolly pine forests to use the extra CO2 to produce more tissues as they take in more of the gas, he said.


"In a dry year trees naturally grow less so the amount of nitrogen doesn’t make any difference," he said. "In a wet year, when there’s plenty of water, the amount of nitrogen does make a difference." Tree growth depends on the availability of nitrogen, which foresters routinely add to Southeastern soils in the form of fertilizer when they plant trees, he added.

Schlesinger will report on the first seven years of results from Duke’s Free Air Carbon Dioxide Enrichment (FACE) experiment at a symposium on "CO2 Fertilization: Boon or Bust?" beginning at 8 a.m. PT on Monday February 16, 2004 during the American Association for the Advancement of Science’s 2004 Annual Meeting in Seattle.

Funded by the U.S. Department of Energy, Duke’s FACE experiment is set up as an open-air test of how higher CO2 outputs produced by fossil fuel emissions and other human activities could change a Southeastern forest ecosystem about 50 years from now.

Most scientists believe rising levels of carbon dioxide and other "greenhouse gases" are warming Earth’s climate somewhat the way a greenhouse does when it traps the sun’s heat. Policy makers who drafted the Kyoto Protocol to counteract global warming envision that planting more trees will help because that will remove some of the CO2. Under this scenario, trees may also grow faster in the higher CO2 atmospheres of the future.

To test that hypothesis, scientists at Duke’s FACE site mounted pipes and valves on three separate rings of towers to release extra gas onto the forested test plots the towers surround. The computerized system maintains CO2 concentrations of 1½ times today’s levels, regardless of wind or weather conditions. Three additional tower rings surround similar test plots but emit no gas, thus serving as experimental "controls." Scientists measure effects of the extra carbon dioxide by comparing results from the active and control sites.

The FACE tower rings are located in Duke Forest, a research reserve created out of former agricultural land that was replanted with trees. "Essentially there’s no topsoil on that site," Schlesinger said. "The land was probably exhausted by cotton and tobacco farming in the 1800s and early 1900s."

Scientists at FACE had an unanticipated opportunity to assess how drought affects trees growing in a CO2 enriched atmosphere when 2002 proved to be one of the driest years on record in North Carolina, Schlesinger said. By comparison, 2003 was one of the area’s wettest years.

"As the experiment has continued, we realized just how hard it is to see what ultimately controls tree growth -- whether CO2, water or soil nutrients," he added.

Apart from the impact of nitrogen deficiency and drought, the scientists have found some indication that pine tree growth declined over the years at the high CO2 levels, he said. The trees bathed in high CO2 also added more fine roots, which Schlesinger suggests is just another indicator of low nitrogen. "If trees don’t have a lot of nutrients they grow a lot of roots looking for them," he said.

Meanwhile, some other species in Duke’s CO2-bathed forest plots have grown at faster rates than the loblolly pines, scientists report. Still-unpublished data shows 70 percent growth increases for poison ivy, according to Schlesinger.

There is also evidence that the extra carbon dioxide has induced more underlying rock to weather into soil through dissolution by CO2-produced carbonic acid. While that action would also remove carbon dioxide from the atmosphere and "store" the remnants in the added soil, the impact would be "trivial" compared to expectations from boosted tree growth, Schlesinger said.

Based on available evidence from the Duke experiment, "I’d be surprised if the forests of the world will take up more than one-third of the carbon dioxide from fossil fuel emissions in the year 2050, which is what our experiment simulates," he predicted.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>