Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using plants and microbes to purify polluted industrial wastewater

07.10.2003


Wetlands are nature’s water filters. They collect water around river mouths and marshes, and whole communities of plants and micro-organisms feed off detritus in these murky depths.



Conventional chemical treatments of industrial waters consume cash, energy and time. Wetlands, by contrast, grow and clean themselves while they act as super-efficient absorbers of phosphates, nitrates and other environmental hazards.

The INDCONWET project applies these natural abilities to industrial wastewater. Toxic by-products in run-off from industrial plants can contaminate drinking water supplies and can be hazardous to health. By installing wetlands next to wastewater sources, the INDCONWET partners are growing a series of purification gardens in Slovenia, Austria and Croatia.


Danijel Vrhovsek, a researcher at Limnos, the Slovenian project partner, says “constructed wetland is inexpensive to build and easy to operate. It also has a larger buffering capacity than conventional treatments to cope with accidents.”

Boosting the filter capacity of each square metre is a key goal. Mira Shalabi, Project Co-ordinator at Bieco, the Croatian project partner, explained that “one disadvantage of constructed wetlands is that they need a bigger area than conventional treatment sites to do the same job.”

However, what they lack in space saving, constructed wetlands make up for in increased efficiency. Bieco’s pilot wetland near Zagreb has reduced concentrations of suspended solids in wastewater by up to 98%, and phosphorous and nitrogen content by 60–85% compared to the 30-40% reduction by conventional methods.

Such results meet water protection standards laid down in EU directives, and make the re-use of industrial wastewater possible.

Different industries produce different pollutants, and INDCONWET is tailoring the design of constructed wetlands to specific needs. “The efficiency of a constructed wetland depends on plant species, substrate selection and microbiological associations,” says Vrhovsek. Project partners are testing various combinations to see which will most efficiently remove pollutants from waste produced by the dairy, detergent, food and fish processing industries.

Constructed wetlands are attractive environments that also remove carbon dioxide and produce oxygen. “Wetlands are an aesthetic solution that provide valuable new habitats for wildlife, which can be used in tourist areas,” says Shalabi.

INDCONWET is a follow-up to the E! 1393 SECONWET project, which won the EUREKA Lillehammer Award for the environment in 2001. Vrhovsek says that this success played an important part in securing financial support for INDCONWET from the Slovenian and Croatian governments. “The Lillehammer prize helped local authorities accept constructed wetlands as a viable alternative to conventional wastewater treatment. As a non-bureaucratic network linking research and the private sector, EUREKA is easy to work with, and has raised the recognition of results at local and national level.”

Nicola Vatthauer | Eureka
Further information:
http://www.eureka.be/indconwet

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>