Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using plants and microbes to purify polluted industrial wastewater

07.10.2003


Wetlands are nature’s water filters. They collect water around river mouths and marshes, and whole communities of plants and micro-organisms feed off detritus in these murky depths.



Conventional chemical treatments of industrial waters consume cash, energy and time. Wetlands, by contrast, grow and clean themselves while they act as super-efficient absorbers of phosphates, nitrates and other environmental hazards.

The INDCONWET project applies these natural abilities to industrial wastewater. Toxic by-products in run-off from industrial plants can contaminate drinking water supplies and can be hazardous to health. By installing wetlands next to wastewater sources, the INDCONWET partners are growing a series of purification gardens in Slovenia, Austria and Croatia.


Danijel Vrhovsek, a researcher at Limnos, the Slovenian project partner, says “constructed wetland is inexpensive to build and easy to operate. It also has a larger buffering capacity than conventional treatments to cope with accidents.”

Boosting the filter capacity of each square metre is a key goal. Mira Shalabi, Project Co-ordinator at Bieco, the Croatian project partner, explained that “one disadvantage of constructed wetlands is that they need a bigger area than conventional treatment sites to do the same job.”

However, what they lack in space saving, constructed wetlands make up for in increased efficiency. Bieco’s pilot wetland near Zagreb has reduced concentrations of suspended solids in wastewater by up to 98%, and phosphorous and nitrogen content by 60–85% compared to the 30-40% reduction by conventional methods.

Such results meet water protection standards laid down in EU directives, and make the re-use of industrial wastewater possible.

Different industries produce different pollutants, and INDCONWET is tailoring the design of constructed wetlands to specific needs. “The efficiency of a constructed wetland depends on plant species, substrate selection and microbiological associations,” says Vrhovsek. Project partners are testing various combinations to see which will most efficiently remove pollutants from waste produced by the dairy, detergent, food and fish processing industries.

Constructed wetlands are attractive environments that also remove carbon dioxide and produce oxygen. “Wetlands are an aesthetic solution that provide valuable new habitats for wildlife, which can be used in tourist areas,” says Shalabi.

INDCONWET is a follow-up to the E! 1393 SECONWET project, which won the EUREKA Lillehammer Award for the environment in 2001. Vrhovsek says that this success played an important part in securing financial support for INDCONWET from the Slovenian and Croatian governments. “The Lillehammer prize helped local authorities accept constructed wetlands as a viable alternative to conventional wastewater treatment. As a non-bureaucratic network linking research and the private sector, EUREKA is easy to work with, and has raised the recognition of results at local and national level.”

Nicola Vatthauer | Eureka
Further information:
http://www.eureka.be/indconwet

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>