Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Despite Lower Carbon Dioxide Emissions, Diesel Cars May Promote More Global Warming than Gasoline Cars

21.10.2002

Laws that favor the use of diesel, rather than gasoline, engines in cars may actually encourage global warming, according to a new study. Although diesel cars obtain 25 to 35 percent better mileage and emit less carbon dioxide than similar gasoline cars, they can emit 25 to 400 times more mass of particulate black carbon and associated organic matter ("soot") per kilometer [mile]. The warming due to soot may more than offset the cooling due to reduced carbon dioxide emissions over several decades, according to Mark Z. Jacobson, Associate Professor of Civil and Environmental Engineering at Stanford University.

Writing in the Journal of Geophysical Research-Atmospheres, Jacobson describes computer simulations leading to the conclusion that control of fossil-fuel black carbon and organic matter may be the most effective method of slowing global warming, in terms of the speed and magnitude of its effect on climate. Not only does soot warm the air to a much greater extent than does carbon dioxide per unit mass, but the lifetime of soot in the air (weeks to months) is much less than is that of carbon dioxide (50 to 200 years). As such, removing soot emissions may have a faster effect on slowing global warming than removing carbon dioxide emissions.

The model Jacobson used tested 12 identifiable effects of airborne particles, known as aerosols, on climate, eight of which had not previously been described in scientific literature. Jacobson notes that it is not currently possible to quantify each of these effects individually, only the net effect of all of them operating simultaneously.

"Since 1896, when Svante Arrhenius first postulated the theory of global warming due to carbon dioxide, control of carbon dioxide has been considered the most effective method of slowing warming," Jacobson says in an interview. "Whereas carbon dioxide clearly causes most global warming, control of shorter-lived warming constituents, such as black carbon, should have a faster effect on slowing warming, which is the conclusion I have drawn from this study. The Kyoto Protocol of 1997 does not even consider black carbon as a pollutant to control with respect to global warming."

The reason the issue of diesel versus gasoline is important, says Jacobson, is that, in Europe, one of the major strategies for satisfying the Kyoto Protocol is to promote further the use of diesel vehicles and specifically to provide a greater tax advantage for diesel. Tax laws in all European Union countries, except the United Kingdom, currently favor diesel, thereby inadvertently promoting global warming, Jacobson says. Further, some countries, including Sweden, Finland, Norway, and the Netherlands, also tax fuels based on their carbon content. These taxes also favor diesel, he notes, since diesel releases less carbon per kilometer [mile] than does gasoline. Nevertheless, the small amount of black carbon and organic matter emitted by diesel may warm the atmosphere more over 100 years than the additional carbon dioxide emitted by gasoline.

In Europe and the U.S., particulate emissions from vehicles are expected to decline over the next decade. For example, by 2005, the European Union will introduce more stringent standards for particulate emissions from light duty vehicles of 0.025 grams per kilometer [0.04 grams per mile]. Even under these standards, diesel powered cars may still warm the climate more over the next 100 years than may gasoline powered cars, according to the study.

The state of California is implementing an even more restrictive standard in 2004, allowing only 0.006 grams per kilometer [0.01 grams per mile] of particulate emissions. Even if the California standard were introduced worldwide, says Jacobson, diesel cars may still warm the climate more than gasoline cars over 13 to 54 years.

In an interview, Jacobson said that new particle traps being introduced by some European automobile manufacturers in their diesel cars appear to reduce black carbon emissions to 0.003 grams per kilometer [0.005 grams per mile], even below the California standard. "I think this is great, and it is an indication that tough environmental laws encourage industry to change. But," he said, "diesel vehicles emitting at this level may still warm the climate more than gasoline over a 10 to 50 year period, not only because of black carbon emissions, but also because the traps themselves require addition fuel use. Gasoline/battery hybrid vehicles now available not only get better mileage than the newest diesels but also emit less black carbon."

In practice, less than 0.1 percent of light vehicles in the United States run on diesel fuel, whereas more than 25 percent do in Europe. (Almost a third of new European cars in 2000 were diesel powered.) In both the United States and Europe, virtually all heavy trucks and buses are diesel powered, and American diesel consumption rates for all modes of ground transportation combined are about 75 to 80 percent of those in Europe.

Control of fossil fuel black carbon and organic matter will not by itself eliminate long term global warming, says Jacobson. This would require reductions in emissions of carbon dioxide and other greenhouse gases, in addition to reduction of particles. Other strategies to be considered for reducing black carbon and organic matter from the atmosphere could include the phasing out of indoor biomass and coal burning and improved particle collection from jet fuel and coal burning, he says. This reduction would provide the additional benefit of reducing the 2.7 million people who die annually from air pollution, as estimated by the World Health Organization. The health costs of particulate pollution range, in industrial countries, from $200,000 to $2.75 million per ton, Jacobson notes.

The research was supported by NASA, the Environmental Protection Agency, the National Science Foundation, the David and Lucile Packard Foundation, and the Hewlett-Packard Company.

Harvey Leifert | Stanford University

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>