Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will North Atlantic threshold response to ocean changes be enough?

18.02.2008
Predictions that the 21st century is safe from major circulation changes in the North Atlantic Ocean may not be as comforting as they seem, according to a Penn State researcher.

"The Intergovernmental Panel on Climate Change concluded that it is very unlikely that the North Atlantic meridional overturning circulation (MOC) will collapse in the 21st century. They predict a probability of less then 10 percent," says Klaus Keller, assistant professor of geosciences.

"However, this should not be interpreted as an all clear signal. There can be a considerable delay between the triggering of an MOC collapse and the actual collapse. In a similar way, a person that has just jumped from a cliff may take comfort that pain in the next few seconds is very unlikely, but the outlook over the long term is less rosy."

Keller and his colleagues analyzed a possible threshold response for the MOC. A threshold response occurs when a system reacts in a highly nonlinear and potentially abrupt way. For example, a paddler can tip a canoe quite a bit without getting wet. However, pushing that canoe just a bit further can result in a wet paddler. The impacts of pushing the canoe to the side are negligible until the very last small push triggers the overturning of the canoe in a threshold response.

The MOC may also respond to human-made greenhouse gas emissions in a threshold response. The research projects sizeable impacts on patterns of surface air temperatures and precipitation, fisheries and terrestrial ecosystems if a slowdown or complete collapse of the MOC occurs.

"Currently, MOC projections are deeply uncertain. This uncertainty puts a large value on observation systems that could deliver an actionable early warning of an MOC collapse," Keller said today (Feb. 17) at the annual meeting of the American Association for the Advancement of Science in Boston. "The problem is that information that arrives after the threshold response has been triggered is only of very limited use. For example, warning a person in a canoe about an approaching waterfall can be useful before the waterfall, but is not really useful after the canoe went over the waterfall.

"The problem with the potential MOC collapse is that the signs of an approaching threshold response are very subtle to detect. The noise is large and picking out the signal from the noise is non trivial," he adds.

"There is tantalizing evidence for a recent MOC slow down. However, this is not an open-and-shut case," Keller continues.

The researchers analyzed how they could improve MOC observation systems to result in more skillful MOC projections. For example, optimizing the locations of the observation system can considerably improve the projections.

Improved MOC projections can enable improved climate policies and can have economic value. Keller and colleagues show that investments into an MOC observation system that would provide an early warning of an approaching MOC collapse would likely pass a cost benefit test.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>