Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will North Atlantic threshold response to ocean changes be enough?

18.02.2008
Predictions that the 21st century is safe from major circulation changes in the North Atlantic Ocean may not be as comforting as they seem, according to a Penn State researcher.

"The Intergovernmental Panel on Climate Change concluded that it is very unlikely that the North Atlantic meridional overturning circulation (MOC) will collapse in the 21st century. They predict a probability of less then 10 percent," says Klaus Keller, assistant professor of geosciences.

"However, this should not be interpreted as an all clear signal. There can be a considerable delay between the triggering of an MOC collapse and the actual collapse. In a similar way, a person that has just jumped from a cliff may take comfort that pain in the next few seconds is very unlikely, but the outlook over the long term is less rosy."

Keller and his colleagues analyzed a possible threshold response for the MOC. A threshold response occurs when a system reacts in a highly nonlinear and potentially abrupt way. For example, a paddler can tip a canoe quite a bit without getting wet. However, pushing that canoe just a bit further can result in a wet paddler. The impacts of pushing the canoe to the side are negligible until the very last small push triggers the overturning of the canoe in a threshold response.

The MOC may also respond to human-made greenhouse gas emissions in a threshold response. The research projects sizeable impacts on patterns of surface air temperatures and precipitation, fisheries and terrestrial ecosystems if a slowdown or complete collapse of the MOC occurs.

"Currently, MOC projections are deeply uncertain. This uncertainty puts a large value on observation systems that could deliver an actionable early warning of an MOC collapse," Keller said today (Feb. 17) at the annual meeting of the American Association for the Advancement of Science in Boston. "The problem is that information that arrives after the threshold response has been triggered is only of very limited use. For example, warning a person in a canoe about an approaching waterfall can be useful before the waterfall, but is not really useful after the canoe went over the waterfall.

"The problem with the potential MOC collapse is that the signs of an approaching threshold response are very subtle to detect. The noise is large and picking out the signal from the noise is non trivial," he adds.

"There is tantalizing evidence for a recent MOC slow down. However, this is not an open-and-shut case," Keller continues.

The researchers analyzed how they could improve MOC observation systems to result in more skillful MOC projections. For example, optimizing the locations of the observation system can considerably improve the projections.

Improved MOC projections can enable improved climate policies and can have economic value. Keller and colleagues show that investments into an MOC observation system that would provide an early warning of an approaching MOC collapse would likely pass a cost benefit test.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>