Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tree of Life Has Lost a Branch

22.01.2008
Norwegian and Swiss biologists have made a startling discovery about the relationship between organisms that most people have never heard of. The Tree of Life must be re-drawn, textbooks need to be changed, and the discovery may also have significant impact on the development of medicines.

The discovery by Norwegian and Swiss researchers has gained attention from biologists worldwide. The findings come from the largest ever genetic comparison of higher life forms on the planet. Of 5000 genes examined, researchers identified 123 common genes from all known groups of organisms; these common genes have been studied more closely. The study has required long hours of work from the researchers and an enormous amount of computing resources—supplied through a large network of computers at the University of Oslo.

Lost a Branch

“The results were pretty astounding. All non-bacterial life on Earth—called eukaryotic life— can now be divided into four main groups instead of the five groups that we have been working with up to now,” says Kamran Shalchian-Tabrizi, an associate professor from the University of Oslo’s Department of Biology who has also worked with the Department of Zoology and Animal Biology and the Department of Genetic Medicine and Development, at the University of Geneva, Switzerland.

The Tree of Life (see illustration) has, through the discovery that the two formerly separated branches share a similar evolutionary history, lost one of its branches, and this will both improve and simplify quite a bit of scientific work in the future.

Important Discovery

“Kinship says a lot about shared traits. Our findings can be important in many fields, such as in the study of the development of life and in the manufacture of new medicines” says Shalchian-Tabrizi in an interview with the University of Oslo’s research magazine Apollon.

“Our knowledge of organisms and the development of medicines are often based on comparative studies across species. It is, therefore, essential that we know the relationships between the largest groups in the great diversity of eukaryotes,” he adds.

The research group has, for example, found that brown algae and silica algae, and groups of single cell organisms like the malaria parasite, marine foraminifera, and the green sun animalcule (acanthocystis turfacea) actually belong to the same group. Previously, these species were thought to be completely unrelated.

“The work that we published in the August edition of PLoS ONE (a leading open access journal found on the internet) means that the description of the Tree of Life must be revised in new textbooks,” says Professor Kjetill S. Jakobsen from the University of Oslo’s Centre for Ecological and Evolutionary Synthesis (CEES). He is also a member of the Microbial Evolution Research Group (MERG), led by Shalchian-Tabrizi, at the Department of Biology. MERG is one of 16 groups that the Faculty of Mathematics and Natural Sciences believes may have the potential to develop into new Centres of Excellence.

The New Branch

All life on Earth can be divided into two essentially different life forms—eukaryotes and prokaryotes. The eukaryotes gather their genetic material in a nucleus, while the prokaryotes (bacteria and archaea) have their genetic material floating freely in the cell. Eukaryotic organisms—such as humans—can, as a result of the new findings, be divided into the following four categories:

•Plants (green and red algae, and plants)

•Opisthokonts (amoebas, fungi, and all animals—including humans)

•Excavates (free-living organisms and parasites)

•SAR (the new main group, an abbreviation of Stramenophiles, Alveolates,
and Rhizaria, the names of some of its members)
“The SAR group has to some extent been identified earlier, but we could not know if it was a correct observation because we lacked statistical data. To get that data, we first had to reconstruct the entire eukaryote tree with the help of these 123 genes. Chromalveolates and rhizaria were clearly separate groups until we published our results,” says Shalchian-Tabrizi.

“To make the picture a little less clear, one branch of chromalveolates is still in no man’s land. It may be that these also belong to SAR, but we will require additional genes and genomes to study this. We have set our sights on doing that in the course of the next few years,” he adds.

Fewer Events

“The Tree of Life tells the story of life on Earth, and our research can say something about how quickly life developed. Our discovery suggests that there were fewer big “events” than we have previously assumed in the development of higher life forms. The more we know about the branches on the Tree of Life, the more we can find out about life’s Big Bang, the beginning of life on Earth,” says Shalchian-Tabrizi.

Three billion years ago, there was only bacteria and Archaea. Eukaryotic life, which comprises all multi-celled organisms, developed in the sea—probably between 1.2 and 1.6 billion years ago. It was not before about 500 million years ago that the first creatures crept onto land.

“By digging down into the historical layers with the help of phylogenetic reconstruction, where we can find out about kinship between organisms at the genetic level and we can find answers to questions about how new traits developed. We are working, in a matter of speaking, with genetic archaeology. In this manner, we can also discover the cause of the Earth’s biological diversity,” says Jakobsen.

Text: Lars Hoff
Photo: Ståle Skogstad
Translation: Alan Louis Belardienlli

Kamran Shalchian-Tabrizi | alfa
Further information:
http://www.bio.uio.no

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>