Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tree of Life Has Lost a Branch

22.01.2008
Norwegian and Swiss biologists have made a startling discovery about the relationship between organisms that most people have never heard of. The Tree of Life must be re-drawn, textbooks need to be changed, and the discovery may also have significant impact on the development of medicines.

The discovery by Norwegian and Swiss researchers has gained attention from biologists worldwide. The findings come from the largest ever genetic comparison of higher life forms on the planet. Of 5000 genes examined, researchers identified 123 common genes from all known groups of organisms; these common genes have been studied more closely. The study has required long hours of work from the researchers and an enormous amount of computing resources—supplied through a large network of computers at the University of Oslo.

Lost a Branch

“The results were pretty astounding. All non-bacterial life on Earth—called eukaryotic life— can now be divided into four main groups instead of the five groups that we have been working with up to now,” says Kamran Shalchian-Tabrizi, an associate professor from the University of Oslo’s Department of Biology who has also worked with the Department of Zoology and Animal Biology and the Department of Genetic Medicine and Development, at the University of Geneva, Switzerland.

The Tree of Life (see illustration) has, through the discovery that the two formerly separated branches share a similar evolutionary history, lost one of its branches, and this will both improve and simplify quite a bit of scientific work in the future.

Important Discovery

“Kinship says a lot about shared traits. Our findings can be important in many fields, such as in the study of the development of life and in the manufacture of new medicines” says Shalchian-Tabrizi in an interview with the University of Oslo’s research magazine Apollon.

“Our knowledge of organisms and the development of medicines are often based on comparative studies across species. It is, therefore, essential that we know the relationships between the largest groups in the great diversity of eukaryotes,” he adds.

The research group has, for example, found that brown algae and silica algae, and groups of single cell organisms like the malaria parasite, marine foraminifera, and the green sun animalcule (acanthocystis turfacea) actually belong to the same group. Previously, these species were thought to be completely unrelated.

“The work that we published in the August edition of PLoS ONE (a leading open access journal found on the internet) means that the description of the Tree of Life must be revised in new textbooks,” says Professor Kjetill S. Jakobsen from the University of Oslo’s Centre for Ecological and Evolutionary Synthesis (CEES). He is also a member of the Microbial Evolution Research Group (MERG), led by Shalchian-Tabrizi, at the Department of Biology. MERG is one of 16 groups that the Faculty of Mathematics and Natural Sciences believes may have the potential to develop into new Centres of Excellence.

The New Branch

All life on Earth can be divided into two essentially different life forms—eukaryotes and prokaryotes. The eukaryotes gather their genetic material in a nucleus, while the prokaryotes (bacteria and archaea) have their genetic material floating freely in the cell. Eukaryotic organisms—such as humans—can, as a result of the new findings, be divided into the following four categories:

•Plants (green and red algae, and plants)

•Opisthokonts (amoebas, fungi, and all animals—including humans)

•Excavates (free-living organisms and parasites)

•SAR (the new main group, an abbreviation of Stramenophiles, Alveolates,
and Rhizaria, the names of some of its members)
“The SAR group has to some extent been identified earlier, but we could not know if it was a correct observation because we lacked statistical data. To get that data, we first had to reconstruct the entire eukaryote tree with the help of these 123 genes. Chromalveolates and rhizaria were clearly separate groups until we published our results,” says Shalchian-Tabrizi.

“To make the picture a little less clear, one branch of chromalveolates is still in no man’s land. It may be that these also belong to SAR, but we will require additional genes and genomes to study this. We have set our sights on doing that in the course of the next few years,” he adds.

Fewer Events

“The Tree of Life tells the story of life on Earth, and our research can say something about how quickly life developed. Our discovery suggests that there were fewer big “events” than we have previously assumed in the development of higher life forms. The more we know about the branches on the Tree of Life, the more we can find out about life’s Big Bang, the beginning of life on Earth,” says Shalchian-Tabrizi.

Three billion years ago, there was only bacteria and Archaea. Eukaryotic life, which comprises all multi-celled organisms, developed in the sea—probably between 1.2 and 1.6 billion years ago. It was not before about 500 million years ago that the first creatures crept onto land.

“By digging down into the historical layers with the help of phylogenetic reconstruction, where we can find out about kinship between organisms at the genetic level and we can find answers to questions about how new traits developed. We are working, in a matter of speaking, with genetic archaeology. In this manner, we can also discover the cause of the Earth’s biological diversity,” says Jakobsen.

Text: Lars Hoff
Photo: Ståle Skogstad
Translation: Alan Louis Belardienlli

Kamran Shalchian-Tabrizi | alfa
Further information:
http://www.bio.uio.no

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>