Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tree of Life Has Lost a Branch

22.01.2008
Norwegian and Swiss biologists have made a startling discovery about the relationship between organisms that most people have never heard of. The Tree of Life must be re-drawn, textbooks need to be changed, and the discovery may also have significant impact on the development of medicines.

The discovery by Norwegian and Swiss researchers has gained attention from biologists worldwide. The findings come from the largest ever genetic comparison of higher life forms on the planet. Of 5000 genes examined, researchers identified 123 common genes from all known groups of organisms; these common genes have been studied more closely. The study has required long hours of work from the researchers and an enormous amount of computing resources—supplied through a large network of computers at the University of Oslo.

Lost a Branch

“The results were pretty astounding. All non-bacterial life on Earth—called eukaryotic life— can now be divided into four main groups instead of the five groups that we have been working with up to now,” says Kamran Shalchian-Tabrizi, an associate professor from the University of Oslo’s Department of Biology who has also worked with the Department of Zoology and Animal Biology and the Department of Genetic Medicine and Development, at the University of Geneva, Switzerland.

The Tree of Life (see illustration) has, through the discovery that the two formerly separated branches share a similar evolutionary history, lost one of its branches, and this will both improve and simplify quite a bit of scientific work in the future.

Important Discovery

“Kinship says a lot about shared traits. Our findings can be important in many fields, such as in the study of the development of life and in the manufacture of new medicines” says Shalchian-Tabrizi in an interview with the University of Oslo’s research magazine Apollon.

“Our knowledge of organisms and the development of medicines are often based on comparative studies across species. It is, therefore, essential that we know the relationships between the largest groups in the great diversity of eukaryotes,” he adds.

The research group has, for example, found that brown algae and silica algae, and groups of single cell organisms like the malaria parasite, marine foraminifera, and the green sun animalcule (acanthocystis turfacea) actually belong to the same group. Previously, these species were thought to be completely unrelated.

“The work that we published in the August edition of PLoS ONE (a leading open access journal found on the internet) means that the description of the Tree of Life must be revised in new textbooks,” says Professor Kjetill S. Jakobsen from the University of Oslo’s Centre for Ecological and Evolutionary Synthesis (CEES). He is also a member of the Microbial Evolution Research Group (MERG), led by Shalchian-Tabrizi, at the Department of Biology. MERG is one of 16 groups that the Faculty of Mathematics and Natural Sciences believes may have the potential to develop into new Centres of Excellence.

The New Branch

All life on Earth can be divided into two essentially different life forms—eukaryotes and prokaryotes. The eukaryotes gather their genetic material in a nucleus, while the prokaryotes (bacteria and archaea) have their genetic material floating freely in the cell. Eukaryotic organisms—such as humans—can, as a result of the new findings, be divided into the following four categories:

•Plants (green and red algae, and plants)

•Opisthokonts (amoebas, fungi, and all animals—including humans)

•Excavates (free-living organisms and parasites)

•SAR (the new main group, an abbreviation of Stramenophiles, Alveolates,
and Rhizaria, the names of some of its members)
“The SAR group has to some extent been identified earlier, but we could not know if it was a correct observation because we lacked statistical data. To get that data, we first had to reconstruct the entire eukaryote tree with the help of these 123 genes. Chromalveolates and rhizaria were clearly separate groups until we published our results,” says Shalchian-Tabrizi.

“To make the picture a little less clear, one branch of chromalveolates is still in no man’s land. It may be that these also belong to SAR, but we will require additional genes and genomes to study this. We have set our sights on doing that in the course of the next few years,” he adds.

Fewer Events

“The Tree of Life tells the story of life on Earth, and our research can say something about how quickly life developed. Our discovery suggests that there were fewer big “events” than we have previously assumed in the development of higher life forms. The more we know about the branches on the Tree of Life, the more we can find out about life’s Big Bang, the beginning of life on Earth,” says Shalchian-Tabrizi.

Three billion years ago, there was only bacteria and Archaea. Eukaryotic life, which comprises all multi-celled organisms, developed in the sea—probably between 1.2 and 1.6 billion years ago. It was not before about 500 million years ago that the first creatures crept onto land.

“By digging down into the historical layers with the help of phylogenetic reconstruction, where we can find out about kinship between organisms at the genetic level and we can find answers to questions about how new traits developed. We are working, in a matter of speaking, with genetic archaeology. In this manner, we can also discover the cause of the Earth’s biological diversity,” says Jakobsen.

Text: Lars Hoff
Photo: Ståle Skogstad
Translation: Alan Louis Belardienlli

Kamran Shalchian-Tabrizi | alfa
Further information:
http://www.bio.uio.no

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>