Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic Soils Continue to Acidify Despite Reduction in Acidic Deposition

14.01.2009
Scientist’s understanding of how soils have responded to decreases in acidic deposition at the regional scale is limited, but a recent study confirms that the acidification of soils in watersheds slows the recovery of aquatic ecosystems, an effect that is threatening the health of forests in the northeastern United States.

Following the Clean Air Act Amendments of 1970 and 1990 acidic deposition in North America has declined significantly since its peak in 1973. Consequently, research has shifted from studying the effects of acidic deposition to the recovery of these aquatic and terrestrial ecosystems.

Regional-scale studies have focused primarily on aquatic systems and while many of these ecosystems are showing signs of chemical recovery (increases in acid neutralizing capacity and pH, decreases in sulfate and aluminum concentrations), recovery is slower than expected based on the magnitude of the decline in acid deposition. Researchers have long suspected that acidification of soils in these watersheds has slowed the recovery of aquatic ecosystems.

Unfortunately, very few studies have examined change in soil chemistry. As a result our understanding of how soils have responded to decreases in acidic deposition at the regional scale is limited.

Researchers at Syracuse University sampled soils in 139 watersheds in the northeastern United States in 2001 that had previously been studied as part of the Direct/Delayed Response Project in 1984. The study showed that over the 17-yr interval, median base saturation in the Oa-horizon decreased from 56% in 1984 to 33% in 2001, while effective cation-exchange capacity, normalized to the soil carbon concentration, showed no significant change. The change in base saturation was the result of almost equivalent changes in carbon-normalized exchangeable calcium (CaN) and exchangeable aluminum (AlN). The median CaN declined by more than 50%, from 23.5 to 10.6 cmolc/kgC, while median AlN more than doubled, from 8.8 to 21.3 cmolc/kgC. This research, to be published in the January-February issue of the Soil Science Society of America Journal, was made possible by the financial support of the William M. Keck Foundation.

A somewhat surprising result was that the Central New England/Maine subregion, the subregion that historically has received the lowest inputs of acid deposition of any of the subregions, showed the greatest declines in exchangeable base cations and base saturation. This area also exhibited the greatest increases in carbon-normalized exchangeable acidity (acidityN) and AlN and was the only subregion to experience a statistically significant decrease in pH. Lead author Richard Warby explained, “It is possible that the acidification of soils in this subregion was delayed relative to the other subregions because of the strong regional gradient in acidic inputs from west to east.”

The researchers believe that the observed trend in soil acidification is likely to continue until acidic inputs decline to the point where soil base cation pools are sufficient to neutralize them. Warby concluded, “Until then we are likely to see the continued sluggish chemical recovery of surface waters and a continuing threat to the health of forests, with additional declines in base status likely to increase the number of sites exhibiting lower forest productivity and or vulnerability to winter injury.”

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org
http://soil.scijournals.org

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>