Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrients from farmed salmon waste can feed new marine industry

23.11.2012
Waste from salmon production is currently being discharged into Norwegian coastal waters. Researchers say this is a resource – worth NOK 6 billion each year – that should be exploited for new biological production.
In 2009 Norwegian fish farms produced over a million tonnes of salmon and salmon trout; nearly 1.2 million tonnes of high-quality feed went into this production. But a considerable amount of feed administered is released to the surrounding waters as respiratory products, faeces and uneaten feed .

This means that a significant portion of the aquaculture industry’s feed is actually wasted on fertilising the ocean with both organic and inorganic nutrients. The value of these nutrients is estimated at NOK 6 billion annually.

Higher economic yield, less pollution

In the project “Integrated open seawater aquaculture, technology for sustainable culture of high productive areas (INTEGRATE)”, researchers have studied whether this waste can be put to use as nutrients for cultivating kelp and/or mussels. The project was headed by Associate Professor Kjell Inge Reitan of the Norwegian University of Science and Technology (NTNU) and received funding from the Research Council of Norway as part of the initiative to promote sustainable seafood production.

“The thinking is that integrated multi-trophic aquaculture (IMTA) will provide significant added value on investments in aquaculture,” explains Dr Reitan, “while at the same time reducing potentially negative environmental impacts.”

Environmental organisations are critical of aquaculture waste as ecologically detrimental.

Kelp can help: many application areas

Researchers carrying out experiments at the research institute SINTEF have documented good growth of kelp cultivated near aquaculture facilities. Mussel cultivation under similar conditions also shows promise.

Kelp can bind large amounts of the inorganic nitrogen and phosphorous discharged by fish farms. One of Norway’s most common macroalgae species, Laminaria saccharina – known as sea belt or sugar kelp – is particularly promising for industrial cultivation for use as a biofuel and feed additive and for extracting its chemicals. Dr Reitan is now collaborating with several companies looking to cultivate kelp for large-scale bioenergy production.

“Development in this area will need to be driven by players in bioenergy and feed production,” asserts Dr Reitan. “I don’t believe the salmon farming industry will get involved in commercially cultivating kelp in the near future, even though integrated production would give the industry a greener profile and enhance sustainability.”

Kelp should grow all year

Based on industrial discharge figures from salmon production in Norway, the researchers estimate the annual potential for IMTA-method kelp at 0.6 to 1.7 million tonnes. The potential for mussels cultivated using IMTA methods is estimated at 7 200 to 21 500 tonnes. Cultivation on this scale would require 82 to 250 square kilometres of marine area. Worldwide, roughly 14 million tonnes of aquatic plants are cultivated annually.

Kelp cultivation needs to be a year-round endeavour in order to be efficient. The researchers at SINTEF have successfully managed year-round artificial cultivation of sugar kelp sporophytes (juvenile plants).

“This makes it possible to exploit the kelp’s strong growth potential when conditions are favourable,” says SINTEF Research Scientist Silje Forbord.

Quadrupling mussel cultivation

The researchers estimate that using IMTA methods to utilise Norway’s salmon production waste nutrients, there is potential to achieve four times the current annual 3 000 to 5 000 tonne harvest of cultivated mussels.

The Research Council’s research programme Aquaculture - An Industry in Growth (HAVBRUK) has launched the research project “Exploitation of nutrients from Salmon aquaculture (EXPLOIT)” to determine how to design and locate kelp and mussel cultivation facilities for optimal utilisation of the aquaculture industry’s waste nutrients.
http://www.forskningsradet.no/en/Newsarticle/Nutrients_from_farmed_salmon
_waste_can_feed_new_marine_industry/1253981749656/p1177315753918

Thomas Keilman | alfa
Further information:
http://www.forskningsradet.no/en

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>