Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nutrients from farmed salmon waste can feed new marine industry

Waste from salmon production is currently being discharged into Norwegian coastal waters. Researchers say this is a resource – worth NOK 6 billion each year – that should be exploited for new biological production.
In 2009 Norwegian fish farms produced over a million tonnes of salmon and salmon trout; nearly 1.2 million tonnes of high-quality feed went into this production. But a considerable amount of feed administered is released to the surrounding waters as respiratory products, faeces and uneaten feed .

This means that a significant portion of the aquaculture industry’s feed is actually wasted on fertilising the ocean with both organic and inorganic nutrients. The value of these nutrients is estimated at NOK 6 billion annually.

Higher economic yield, less pollution

In the project “Integrated open seawater aquaculture, technology for sustainable culture of high productive areas (INTEGRATE)”, researchers have studied whether this waste can be put to use as nutrients for cultivating kelp and/or mussels. The project was headed by Associate Professor Kjell Inge Reitan of the Norwegian University of Science and Technology (NTNU) and received funding from the Research Council of Norway as part of the initiative to promote sustainable seafood production.

“The thinking is that integrated multi-trophic aquaculture (IMTA) will provide significant added value on investments in aquaculture,” explains Dr Reitan, “while at the same time reducing potentially negative environmental impacts.”

Environmental organisations are critical of aquaculture waste as ecologically detrimental.

Kelp can help: many application areas

Researchers carrying out experiments at the research institute SINTEF have documented good growth of kelp cultivated near aquaculture facilities. Mussel cultivation under similar conditions also shows promise.

Kelp can bind large amounts of the inorganic nitrogen and phosphorous discharged by fish farms. One of Norway’s most common macroalgae species, Laminaria saccharina – known as sea belt or sugar kelp – is particularly promising for industrial cultivation for use as a biofuel and feed additive and for extracting its chemicals. Dr Reitan is now collaborating with several companies looking to cultivate kelp for large-scale bioenergy production.

“Development in this area will need to be driven by players in bioenergy and feed production,” asserts Dr Reitan. “I don’t believe the salmon farming industry will get involved in commercially cultivating kelp in the near future, even though integrated production would give the industry a greener profile and enhance sustainability.”

Kelp should grow all year

Based on industrial discharge figures from salmon production in Norway, the researchers estimate the annual potential for IMTA-method kelp at 0.6 to 1.7 million tonnes. The potential for mussels cultivated using IMTA methods is estimated at 7 200 to 21 500 tonnes. Cultivation on this scale would require 82 to 250 square kilometres of marine area. Worldwide, roughly 14 million tonnes of aquatic plants are cultivated annually.

Kelp cultivation needs to be a year-round endeavour in order to be efficient. The researchers at SINTEF have successfully managed year-round artificial cultivation of sugar kelp sporophytes (juvenile plants).

“This makes it possible to exploit the kelp’s strong growth potential when conditions are favourable,” says SINTEF Research Scientist Silje Forbord.

Quadrupling mussel cultivation

The researchers estimate that using IMTA methods to utilise Norway’s salmon production waste nutrients, there is potential to achieve four times the current annual 3 000 to 5 000 tonne harvest of cultivated mussels.

The Research Council’s research programme Aquaculture - An Industry in Growth (HAVBRUK) has launched the research project “Exploitation of nutrients from Salmon aquaculture (EXPLOIT)” to determine how to design and locate kelp and mussel cultivation facilities for optimal utilisation of the aquaculture industry’s waste nutrients.

Thomas Keilman | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>