Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrients from farmed salmon waste can feed new marine industry

23.11.2012
Waste from salmon production is currently being discharged into Norwegian coastal waters. Researchers say this is a resource – worth NOK 6 billion each year – that should be exploited for new biological production.
In 2009 Norwegian fish farms produced over a million tonnes of salmon and salmon trout; nearly 1.2 million tonnes of high-quality feed went into this production. But a considerable amount of feed administered is released to the surrounding waters as respiratory products, faeces and uneaten feed .

This means that a significant portion of the aquaculture industry’s feed is actually wasted on fertilising the ocean with both organic and inorganic nutrients. The value of these nutrients is estimated at NOK 6 billion annually.

Higher economic yield, less pollution

In the project “Integrated open seawater aquaculture, technology for sustainable culture of high productive areas (INTEGRATE)”, researchers have studied whether this waste can be put to use as nutrients for cultivating kelp and/or mussels. The project was headed by Associate Professor Kjell Inge Reitan of the Norwegian University of Science and Technology (NTNU) and received funding from the Research Council of Norway as part of the initiative to promote sustainable seafood production.

“The thinking is that integrated multi-trophic aquaculture (IMTA) will provide significant added value on investments in aquaculture,” explains Dr Reitan, “while at the same time reducing potentially negative environmental impacts.”

Environmental organisations are critical of aquaculture waste as ecologically detrimental.

Kelp can help: many application areas

Researchers carrying out experiments at the research institute SINTEF have documented good growth of kelp cultivated near aquaculture facilities. Mussel cultivation under similar conditions also shows promise.

Kelp can bind large amounts of the inorganic nitrogen and phosphorous discharged by fish farms. One of Norway’s most common macroalgae species, Laminaria saccharina – known as sea belt or sugar kelp – is particularly promising for industrial cultivation for use as a biofuel and feed additive and for extracting its chemicals. Dr Reitan is now collaborating with several companies looking to cultivate kelp for large-scale bioenergy production.

“Development in this area will need to be driven by players in bioenergy and feed production,” asserts Dr Reitan. “I don’t believe the salmon farming industry will get involved in commercially cultivating kelp in the near future, even though integrated production would give the industry a greener profile and enhance sustainability.”

Kelp should grow all year

Based on industrial discharge figures from salmon production in Norway, the researchers estimate the annual potential for IMTA-method kelp at 0.6 to 1.7 million tonnes. The potential for mussels cultivated using IMTA methods is estimated at 7 200 to 21 500 tonnes. Cultivation on this scale would require 82 to 250 square kilometres of marine area. Worldwide, roughly 14 million tonnes of aquatic plants are cultivated annually.

Kelp cultivation needs to be a year-round endeavour in order to be efficient. The researchers at SINTEF have successfully managed year-round artificial cultivation of sugar kelp sporophytes (juvenile plants).

“This makes it possible to exploit the kelp’s strong growth potential when conditions are favourable,” says SINTEF Research Scientist Silje Forbord.

Quadrupling mussel cultivation

The researchers estimate that using IMTA methods to utilise Norway’s salmon production waste nutrients, there is potential to achieve four times the current annual 3 000 to 5 000 tonne harvest of cultivated mussels.

The Research Council’s research programme Aquaculture - An Industry in Growth (HAVBRUK) has launched the research project “Exploitation of nutrients from Salmon aquaculture (EXPLOIT)” to determine how to design and locate kelp and mussel cultivation facilities for optimal utilisation of the aquaculture industry’s waste nutrients.
http://www.forskningsradet.no/en/Newsarticle/Nutrients_from_farmed_salmon
_waste_can_feed_new_marine_industry/1253981749656/p1177315753918

Thomas Keilman | alfa
Further information:
http://www.forskningsradet.no/en

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>