Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irukandji threat to southern waters

28.10.2013
A Griffith University led study has made the surprising discovery that ocean acidification may provide some protection for South East Queenslanders from the Irukandji jellyfish.

Researchers from Griffith University's Australian Rivers Institute have conducted a series of climate change simulation experiments to investigate whether the dangerous tropical jellyfish, the Irukandji, is likely to establish breeding populations in the South East.

It was found that while higher sea temperatures could provide an opportunity for adult Irukandji to expand their range south, increasing ocean acidification may inhibit the development of juveniles.

The research is the first step towards assessing if Irukandji pose a significant threat to tourism and human health in the South East. The findings have been published in the journal Global Change Biology.

Lead author, Griffith PhD student Shannon Klein said concerns have arisen from evidence world-wide that tropical marine species are moving towards the poles as oceans warm.

"Increasing ocean temperatures and strengthening boundary currents have caused the poleward migration of many marine species," Shannon Klein said.

"These effects of climate change are particularly apparent on the eastern coast of Australia. Over the past 60 years the East Australian Current (EAC) has strengthened and now delivers warmer tropical waters further south by as much as 350km."

As a consequence at least five species of tropical fish that occur on the Great Barrier Reef (GBR) are predicted to be able of survive winter temperatures in waters off Sydney by 2080. Among all species that could potentially expand their range south, the Irukandji would arguably have one of the greatest socio-economic impacts.

Irukandji have historically been limited to waters north of Gladstone, however in 2007 an adult specimen was recorded for the first time as far south as Hervey Bay.

"What we needed to find out was if the Irukandji would be able to establish their entire lifecycle south of their historical range in these expanded reaches of warm water or if adults only are able to drift south on the strengthened current," Shannon said.

As it turns out the role of ocean acidification in limiting reproduction may hold the key to protecting the SE Queensland coastline. But we may not be out of hot water just yet.

"This response may reduce the likelihood of Irukandji jellyfish establishing permanent populations in South East Queensland in the long term, however, it is possible that they could migrate farther south in the short term if acidification proceeds slowly and appropriate reproduction habitats are available.

"But even if juvenile populations remain confined to more northerly waters there is still the strengthening EAC which could carry adults south."

Irukandji jellyfish are represented by at least six species of cubozoan jellyfish which occur throughout the world's tropical zones, so the implications of this study are far reaching.

"Our results suggest that, if other Irukandji species behave similarly, range expansions could be occurring in other regions around the globe," Shannon said.

Helen Wright | EurekAlert!
Further information:
http://www.griffith.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>