Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How red tide knocks out its competition

05.06.2014

New research reveals how the algae behind red tide thoroughly disables – but doesn't kill – other species of algae. The study shows how chemical signaling between algae can trigger big changes in the marine ecosystem.

Marine algae fight other species of algae for nutrients and light, and, ultimately, survival. The algae that cause red tides, the algal blooms that color blue ocean waters red, carry an arsenal of molecules that disable some other algae. The incapacitated algae don't necessarily die, but their growth grinds to a halt. This could explain part of why blooms can be maintained despite the presence of competitors.

Sampling Red Tide

Kelsey Poulson-Ellestad, a former graduate student at the Georgia Institute of Technology, now at Woods Hole Oceanographic Institution, works with a Conductivity, temperature and depth (CTD) sampling rosette, which is lowered over the side of a vessel and is used to collect water samples from various depths.

Credit: Kelsey Poulson-Ellestad

In the new study, scientists used cutting-edge tools in an attempt to solve an old ecological mystery: Why do some algae boom and some algae bust?

The research team used cultured strains of the algae that cause red tide, exposed competitor algae to its exuded chemicals, and then took a molecular inventory of the competitor algae's growth and metabolism pathways. Red tide exposure significantly slowed the competitor algae's growth and compromised its ability to maintain healthy cell membranes.

"Our study describes the physiological responses of competitors exposed to red tide compounds, and indicates why certain competitor species may be sensitive to these compounds while other species remain relatively resistant," said Kelsey Poulson-Ellestad, a former graduate student at the Georgia Institute of Technology, now at Woods Hole Oceanographic Institution, and the study's co-first author, along with Christina Jones, a Georgia Tech graduate student.

"This can help us determine mechanisms that influence species composition in planktonic communities exposed to red tides, and suggests that these chemical cues could alter large-scale ecosystem phenomena, such as the funneling of material and energy through marine food webs."

The study was sponsored by the National Science Foundation and was published June 2 in the Online Early Edition of the journal Proceedings of the National Academy of Sciences (PNAS). The work was a collaboration between Georgia Tech, the University of Washington, and the University of Birmingham in the United Kingdom.

The algae that form red tide in the Gulf of Mexico are dinoflagellates called Karenia brevis, or just Karenia by scientists. Karenia makes neurotoxins that are toxic to humans and fish. Karenia also makes small molecules that are toxic to other marine algae, which is what the new study analyzed.

"In this study we employed a global look at the metabolism of these competitors to take an unbiased approach to ask how are they being affected by these non-lethal, subtle chemicals that are released by Karenia," said Julia Kubanek, Poulson-Ellestad's graduate mentor and a professor in the School of Biology and the School of Chemistry and Biochemistry at Georgia Tech. "By studying both the proteins and metabolites, which interact to form metabolic pathways, we put together a picture of what's happening inside the competitor algal cells when they're extremely stressed."

The research team used a combination of mass spectrometry and nuclear magnetic resonance spectroscopy to form a holistic picture of what's happening inside the competitor algae. The study is the first time that metabolites and proteins were measured simultaneously to study ecological competition.

"A key aspect of this study was the use of high-resolution metabolomic tools based on mass spectrometry," said Facundo M. Fernández, a professor in the School of Chemistry and Biochemistry, whose lab ran the mass spectrometry analysis. "This allowed us to detect and identify metabolites affected by exposure to red tide microorganisms."

Mass spectrometry was also used for analysis of proteins, an approach called proteomics, led by Brook Nunn at the University of Washington.

The research team discovered that red tide disrupts multiple physiological pathways in the competitor diatom Thalassiosira pseudonana. Red tide disrupted the energy metabolism and cellular protection mechanisms, inhibited their ability to regulate fluids and increased oxidative stress. T. pseudonana exposed to red tide toxins grew 85 percent slower than unexposed algae.

"This competitor that's being affected by red tide is suffering a globally upset state," Kubanek said. "It's nothing like what it would be in a healthy, normal cell."

The work shows that chemical cues in the plankton have the potential to alter large-scale ecosystem processes including primary production and nutrient cycling in the ocean.

The research team found that another competitor diatom, Asterionellopsis glacialis, which frequently co-occurs with Karenia red tides, was partially resistant to red tide, suggesting that co-occurring species may have evolved partial resistance to red tide via robust metabolic pathways.

Other work in Kubanek's lab is examining red tide and its competition in the field to see how these interactions unfold in the wild.

"Karenia is a big mystery. It has these periodic blooms that happen most years now, but what's shaping that cycle is unclear," Kubanek said. "The role of competitive chemical cues in these interactions is also not well understood."

###

This research is supported by the National Science Foundation under award number OCE-1060300. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

CITATION: Kelsey L. Poulson-Ellestad, et al., "Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton." (June, PNAS) http://www.pnas.org/cgi/doi/10.1073/pnas.1402130111

Brett Israel | Eurek Alert!

Further reports about: PNAS Red tides blooms competitor marine algae metabolism metabolites pathways proteins red tide algae species toxic

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>