Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient phosphorus use by phytoplankton

20.12.2010
Rapid turnover and remodelling of lipid membranes could help phytoplankton cope with nutrient scarcity in the open ocean.

A team led by Patrick Martin of the National Oceanography Centre has shown that a species of planktonic marine alga can rapidly change the chemical composition of its cell membranes in response to changes in nutrient supply. The findings indicate that the process may be important for nutrient cycling and the population dynamics of phytoplankton in the open ocean.

Tiny free-floating algae called phytoplankton exist in vast numbers in the upper ocean. Through the process of photosynthesis, they use the energy of sunlight to produce organic compounds required for growth, which draws large amounts of carbon dioxide down from the atmosphere. However, they also need other nutrients such as phosphorus, which is chronically scarce in many oceanic regions.

"We are interested in the adaptations of phytoplankton living in regions where nutrients are in short supply," explained Patrick Martin.

Under normal growth conditions, the cell membranes of phytoplankton contain phosphorus-based lipids called phospholipids. However, it has been appreciated for some time that phytoplankton can exchange their membrane phospholipids with non-phosphorus lipids when phosphorus is in short supply. This substitution saves the cells some phosphorus, which can then be used for other important growth processes such as making new DNA.

"Until now, it has been unclear how rapidly phytoplankton cells are able to change the phosphorus composition of their membranes, and hence whether this process is important over the life-time of individual cells" said Patrick Martin.

To address the issue, he and his collaborators from Woods Hole Oceanographic Institution (WHOI) in the United States performed growth experiments with a species called Thalassiosira pseudonana, which biologists use as a model species representative of a very important group of phytoplankton called diatoms.

They found that when the diatoms were starved of phosphorus their membrane phospholipids were replaced with lipids lacking phosphorus over a couple of days. Moreover, when the diatoms were re-supplied with phosphorus, they rapidly renewed the phospholipid content of their cell membranes, removing the lipids lacking phosphorus.

"Our research now shows that this substitution, at least in the alga we studied, can take place within 24 hours, and is clearly a physiological response by individual cells to the phosphorus concentration in their environment – as opposed to a longer-term adjustment over successive generations," said Patrick Martin.

The researchers also show that when cells have ample phosphorus, their phospholipids contain a surprisingly large amount of phosphorus. Therefore, if these cells suddenly encounter low phosphorus conditions, they have quite a substantial phosphorus reserve in their lipids, which might be significant for supporting further growth.

"Phosphorus concentrations in the ocean can be locally enhanced by physical features such as eddies in the water, and rapid remodelling of lipid membranes might allow phytoplankton to exploit such conditions," said Patrick Martin.

The researchers are Patrick Martin (NOC), and Benjamin Van Mooy, Abigail Heithoff and Sonya Dyhrman (WHOI). The work was conducted while Patrick Martin visited Woods Hole on an exchange programme last autumn.

This research was funded by the United States' National Science Foundation and by the Graduate School of the NOC in Southampton.

Publication: Martin, P., Van Mooy, B. A. S., Heithoff, A. & Dyhrman, S. T. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J. (published online, 16 December 2010).

Dr Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>