Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buoys provide new environmental monitoring system along Swedish coast

18.11.2011
With a new system of monitoring buoys along the entire coast of Sweden, researchers will be better able to study climate change.

The project, funded by the Swedish Research Council, is led by Gothenburg University in a collaboration involving five Swedish marine organizations.

“To be able to determine whether our seas are changing as a result of human activities, such as emissions of greenhouse gases, measurements must be performed. Until now these measurements have been done sporadically by researchers on board ships, which is extremely expensive. With automatic metering equipment we will be able to gather considerably more measurement data,” says Professor Katarina Abrahamsson, who directs the Sven Lovén Center for Marine Sciences at Gothenburg University and is leading the project.

With the automatic metering buoys, researchers hope to fill in huge gaps in our knowledge today, such as how acidity levels (pH) vary along our coasts. Data series with high time resolution yield unique opportunities for researchers to better understand physical, chemical, and biological processes in the sea.

The environmental monitoring system will consist of some ten buoys to be placed at representative sites around the entire coast of Sweden. The buoys will be equipped with sensors that continuously meter salinity, temperature, prevalence of plankton, oxygen, nutritive salts, acidity, and flow velocity. The measurements are sent to land and made available to researchers.

“Thanks to these new monitoring buoys, basic research will be provided with new knowledge. The measurement results will be important for society’s planning of measures to reduce the footprint of humans on the environment. The grant from the Swedish Research Council is a recognition of our efforts to create an aggregate Swedish marine infrastructure,” says Katarina Abrahamsson.

This work is a collaborative project involving Gothenburg University, Stockholm University, Umeå University, Linnaeus University, and the Swedish Meteorological and Hydrological Institute.

CONTACT: Katarina Abrahamsson, phone: +46 (0)31-786 90 51, katarina.abrahamsson@loven.gu.se

Anita Fors | idw
Further information:
http://www.gu.se

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>