Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic-Resistant Bacteria Widespread in Hudson River, Study Finds

19.07.2013
Ongoing Risks Come From Sewage

The risk of catching some nasty germ in the Hudson River just started looking nastier. Disease-causing microbes have long been found swimming there, but now researchers have documented antibiotic-resistant strains in specific spots, from the Tappan Zee Bridge to lower Manhattan. The microbes identified are resistant to ampicillin and tetracycline, drugs commonly used to treat ear infections, pneumonia, salmonella and other ailments. The study is published in the current issue of the Journal of Water and Health.

“If you find antibiotic-resistant bacteria in an ecosystem, it’s hard to know where they’re coming from,” said study co-author Andrew Juhl, a microbiologist at Columbia University’s Lamont-Doherty Earth Observatory. “In the Hudson, we have a strong case to make that it’s coming from untreated sewage.”

On repeated visits to 10 locations on the Hudson, the researchers found microbes resistant to ampicillin 84 percent of the time, and resistant to tetracycline 38 percent of the time. The stretches harboring the most sewage-indicator bacteria also generally contained the most antibiotic-resistant ones. These were led by Flushing Bay, near LaGuardia Airport, followed by Newtown Creek, on the border of Brooklyn and Queens; and sewage outfall pipes near Piermont Pier in Rockland County, N.Y.; West 125th Street in Manhattan; and Yonkers, in Westchester County, N.Y.. The antibiotic-resistant bacteria found include potentially pathogenic strains of the genera Pseudomonas, Acinetobacter, Proteus and Escherichia.

“They could be difficult to treat in people with compromised immune systems,” said Dr. Stephen Morse, an infectious disease epidemiologist at Columbia’s Mailman School of Public Health, who was not involved in the study. “If I were inclined to swim in the Hudson, quite truthfully I’d look to this paper for the places to stay away from.”

Though people routinely catch infections while swimming, only severe illnesses are typically treated with antibiotics. And an antibiotic-resistant infection would be noted only if the illness failed to respond to treatment--a scenario that probably happens, but is not well documented or reported, said Morse. One exception was an outbreak on the Indonesian island of Borneo in 2000 when 32 athletes competing in a swimming event in the Segama River came down with leptospirosis. Transmitted by animal urine, the infection is marked by fever, chills and pink eye.

Previous studies in the Hudson have shown that microbe counts go up after heavy rains, when raw sewage is commonly diverted into the river. Some 27 billion gallons of raw sewage and rainwater are released into the Hudson each year by wastewater treatment plants. Lacking the capacity during heavy rains to simultaneously pump runoff from city streets and sewage from buildings, many sewage-treatment plants are forced to divert both streams into the river, in what is known as a combined-sewer overflow, or CSO. In an ongoing partnership with the environmental group Riverkeeper, scientists at Lamont-Doherty and Queens College at the City University of New York have been tracking water quality in the Hudson and making their results public on Riverkeeper’s website. Their work has confirmed that CSOs remain a serious problem, even though the Hudson is generally cleaner than it has been in the past.

The Hudson has gotten so much better,” said the study’s lead author, Suzanne Young, a former student at Lamont and Queens College, now at the University of South Florida. “If we came up with a sustainable solution, water quality could continue to improve.”

This is not the first time that antibiotic-resistant bacteria have been found in a river. A 2002 study in the journal Emerging Infectious Diseases found ampicillin-resistant bacteria in the Hudson, as well as 15 other U.S. rivers, including the Mississippi, Ohio and Colorado. However, this is the first study to firmly link specific microbes to sewage in the Hudson, and to compare results at different locations.

It is not just a matter of swimming safely. Rivers can incubate bacteria, allowing them to transfer their drug-resistant genes to normal bacteria. “If these resistant genes are transferred, they can develop into disease-causing bacteria,” said Ronald J. Ash, a microbiologist and professor emeritus at Washburn University, lead author of the 2002 paper.

Bacteria can also play an important role in the environment. As more antibiotic-resistant microbes replace native bacteria, those changes could eventually have an impact on plants and animals. “Microbial communities can affect the health of the entire ecosystem,” said Young, who is now studying how Mississippi water snakes respond to infection with antibiotic-resistant pathogens.

Antibiotic resistance has become a public health crisis. About 100,000 people die each year from hospital-acquired infections, most of which are due to antibiotic-resistant pathogens, according to the Infectious Diseases Society of America. Superbugs resistant to methicillin kill about 19,000 people each year, more than HIV/AIDS. The development of resistance has been linked to overuse of antibiotics to treat minor infections in humans, and to industrial feedlots, where low levels of antibiotics are fed to chicken, cattle and pigs to promote growth and prevent infection. The Natural Resources Defense Council estimates that 80 percent of antibiotics in the U.S. are fed to livestock.

There are signs that the tide is turning, at least in the Hudson. In a landmark deal with the state, New York City agreed last year to spend $187 million to replace some parking lots and city streets with porous pavement, and to plant more vegetation on rooftops and other impervious surfaces to reduce runoff. An additional $2.4 billion will be spent on infrastructure to eliminate 1.5 billion gallons of CSOs by 2030. “There’s now a timeline for answering the question, ‘How much sewage overflow reduction is needed and when?’ ” said Larry Levine, a senior attorney at the Natural Resources Defense Council, which. pushed for the settlement.

Public awareness may also help. In 2012, New York Gov. Andrew Cuomo signed the Sewage Pollution Right to Know Law requiring public notification of sewage spills in New York waters. Not long after the law passed, Westchester County announced a “controlled discharge” at Sleepy Hollow, sparking a debate about whether the National Ironman competition should cancel its swimming leg 15 miles to the south. (The swim went ahead as planned).


“The results from this study are significant because they help us to understand the processes involved in the spread of antibiotic resistant bacteria through the environment, but also because they provide added incentive to reduce sewage pollution into our waterways” said coauthor Gregory O’Mullan, a microbiologist with joint appointments at Lamont and Queens College who oversees the laboratory where the study was done.
Media Inquiries:
Kim Martineau
kmartine@ldeo.columbia.edu
Office:(845) 365-8708
Cell: (646)-717-0134

Kim Martineau | EurekAlert!
Further information:
http://www.ldeo.columbia.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>