Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A low-carbon Finland is a great challenge, but an achievable one

20.11.2012
VTT specialists have assessed Finland's chances of achieving the 80% greenhouse gas emission reduction targets. The EU's goal for 2050 is to reduce emissions by at least 80% from the level of 1990.

The goal is a tough one for Finland, but possible to achieve as long as all sectors that produce or consume energy take part. On top of this, all greenhouse gas emissions must be reduced.

Finland requires new technological solutions for industrial activity, for the transport of people, goods and services, and for housing and working methods. If clean forms of energy and the efficiency of energy use are substantially developed and widely adopted, Finland could become a seller of emission allowances and clean energy.

Finland benefits from the availability of substantial reserves of renewable energy and a diversified energy structure.

In 2050, 85% of Finnish electricity could be produced free of carbon dioxide. This requires diverse energy production and the widespread adoption of carbon capture and storage (CCS) technologies, in connection with both fossil fuel and biomass use.

If the industry significantly improves its energy efficiency and adopts CCS, 80% of the energy consumed by industry will be carbon-neutral. Resource efficiency must be improved and the use of recycled materials increased.

A 70% level of carbon-neutral energy in transport is possible to achieve by 2050. In low-carbon transport, there is great demand for biofuels; these could constitute up to 40% of the total energy consumed by transport sector.

Of the final energy used by buildings, 85% would be carbon-neutral in 2050. Some buildings could even produce energy locally. The potential for improving the energy efficiency of buildings is great even with current technologies, but sufficiently rapid implementation poses a challenge.

Low Carbon Finland 2050 is a self-financed strategic research project of VTT that supports VTT's own long-term operational planning. The project combines technological expertise from various areas of competence within VTT, from low-carbon and smart energy systems to foresight and energy system modelling.

VTT's Low Carbon 2050 research project's final report online: http://www.vtt.fi/inf/pdf/visions/2012/V2.pdf

Kai Sipilä | EurekAlert!
Further information:
http://www.vtt.fi

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>