Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe controls for safety brakes minimise risks

02.05.2013
Mayr power transmission presents a new, reliable brake control for their "ROBA-stop" safety brake construction series.

The "ROBA-SBCplus" brake control, developed together with Pilz, is technically superior in every respect in terms of safety contactor circuits. It offers, among other things, wear-free, electronic switching, it foregoes programming, saves wiring and reduces the construction space requirements. The module prototype-inspected by the TÜV (Technical Inspectorate) can be deployed up to the highest Performance Level PLe and SIL 3.


The ROBA-SBCplus brake control prototype inspected by the TÜV can be deployed up to Performance Level PLe and Safety Integrity Level (SIL) 3.

In order to enable safety brakes to contribute towards risk reduction in machines and systems, they require a reliable control. Vertical axes or stage equipment, for example, rank among the particularly hazardous machine parts. In order to protect people from all hazards in such situations, the remaining functional risks in accordance with safety standard DIN EN ISO 13849-1 must first be assessed, and subsequently suitable measures for the reduction of risks must be taken. As a mechanical component, the brake falls under the category of functional safety in accordance with this standard.

The safety brakes from Mayr power transmission function according to the "fail-safe" principle and are closed in a de-energised state. The brake control has the task of reliably interrupting the current in the magnetic coil when switching the brake off. The brake control module works using wear-free electronic semi-conductors, and therefore achieves practically unlimited switching frequency and switching reliability.

The fail-safe internal construction of the control includes, among other things, the internal diagnostic checks for short circuit, earth short-circuit and line interruptions, as well as reliable overexcitation for releasing the brake and switching to a reduced holding voltage with an open brake. Numerous other safety functions permit a comprehensive error diagnosis: as a result, the output voltage and the switching times for the brake are monitored. The signal evaluation of the release monitoring with plausibility check enables switching condition monitoring of the brake.

Thanks to electronic, wear-free semi-conductor contacts, the ROBA-SBCplus is substantially more reliable and safer than the contactor circuits; and it foregoes complex hardware. The module replaces numerous functional components. Their reduction saves a significant amount of space in the control cabinet due to the reduced wiring and constructional space requirements.

The greatest savings potential is achieved if the performance capability of the module is fully utilised and two brakes are simultaneously reliably controlled. Brakes with a 5 A nominal current can be connected, and the two brakes do not have to be identical in construction. Easy parameterability and the elimination of programming and validation round up the features of superiority.

Contact:
Chr. Mayr GmbH + Co. KG, Eichenstraße 1, 87665 Mauerstetten, Dipl.-Ing. (FH) Hermann Bestle
Tel.: 08341/804-232, Fax: 08341/804-49232
E-Mail: hermann.bestle@mayr.de, Web: http://www.mayr.com

Hermann Bestle | Chr. Mayr GmbH + Co KG
Further information:
http://www.mayr.com

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>