Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe controls for safety brakes minimise risks

02.05.2013
Mayr power transmission presents a new, reliable brake control for their "ROBA-stop" safety brake construction series.

The "ROBA-SBCplus" brake control, developed together with Pilz, is technically superior in every respect in terms of safety contactor circuits. It offers, among other things, wear-free, electronic switching, it foregoes programming, saves wiring and reduces the construction space requirements. The module prototype-inspected by the TÜV (Technical Inspectorate) can be deployed up to the highest Performance Level PLe and SIL 3.


The ROBA-SBCplus brake control prototype inspected by the TÜV can be deployed up to Performance Level PLe and Safety Integrity Level (SIL) 3.

In order to enable safety brakes to contribute towards risk reduction in machines and systems, they require a reliable control. Vertical axes or stage equipment, for example, rank among the particularly hazardous machine parts. In order to protect people from all hazards in such situations, the remaining functional risks in accordance with safety standard DIN EN ISO 13849-1 must first be assessed, and subsequently suitable measures for the reduction of risks must be taken. As a mechanical component, the brake falls under the category of functional safety in accordance with this standard.

The safety brakes from Mayr power transmission function according to the "fail-safe" principle and are closed in a de-energised state. The brake control has the task of reliably interrupting the current in the magnetic coil when switching the brake off. The brake control module works using wear-free electronic semi-conductors, and therefore achieves practically unlimited switching frequency and switching reliability.

The fail-safe internal construction of the control includes, among other things, the internal diagnostic checks for short circuit, earth short-circuit and line interruptions, as well as reliable overexcitation for releasing the brake and switching to a reduced holding voltage with an open brake. Numerous other safety functions permit a comprehensive error diagnosis: as a result, the output voltage and the switching times for the brake are monitored. The signal evaluation of the release monitoring with plausibility check enables switching condition monitoring of the brake.

Thanks to electronic, wear-free semi-conductor contacts, the ROBA-SBCplus is substantially more reliable and safer than the contactor circuits; and it foregoes complex hardware. The module replaces numerous functional components. Their reduction saves a significant amount of space in the control cabinet due to the reduced wiring and constructional space requirements.

The greatest savings potential is achieved if the performance capability of the module is fully utilised and two brakes are simultaneously reliably controlled. Brakes with a 5 A nominal current can be connected, and the two brakes do not have to be identical in construction. Easy parameterability and the elimination of programming and validation round up the features of superiority.

Contact:
Chr. Mayr GmbH + Co. KG, Eichenstraße 1, 87665 Mauerstetten, Dipl.-Ing. (FH) Hermann Bestle
Tel.: 08341/804-232, Fax: 08341/804-49232
E-Mail: hermann.bestle@mayr.de, Web: http://www.mayr.com

Hermann Bestle | Chr. Mayr GmbH + Co KG
Further information:
http://www.mayr.com

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>