Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital photonic production: science and industry shape the future of production engineering

19.11.2012
The “Digital Photonic Production” research campus in Aachen offers local industry and science a skilled and responsive instrument with which to shape the future of production technology.

Support comes from the German Federal Ministry of Education and Research BMBF, which has provided financial backing of up to 30 million euros through its “Research Campus – Public-Private Partnerships for Innovation” funding initiative.


Load- and resource optimized wheel bearing manufactured using selective laser melting.
Fraunhofer ILT/Volker Lannert.


Rapid manufacturing of turbine components.
Fraunhofer ILT/Volker Lannert.

The Chair of Laser Technology LLT at RWTH Aachen University emerged from the national competition as one of ten winners, having coordinated a proposals consortium made up of industry partners and further RWTH institutes.

A new national center for digital photonic production is now being set up in Aachen, in collaboration with the Fraunhofer Institute for Laser Technology ILT, one of the most outstanding facilities for laser technology in Europe, and the initiatives and networks already existing in this field. The intensive cooperation between research and industry also means the chances are good for the founding of spin-off companies.

The aim of the BMBF’s nationwide German funding initiative “Research Campus – Public-Private Partnerships for Innovation” is to offer long-term support, at an early stage, to encourage universities, research institutes and businesses to work together in ten economically and socially relevant technology fields. Federal Research Minister Annette Schavan announced the ten winners of the initiative on September 25, 2012, among them the Digital Photonic Production research campus coordinated by Prof. Poprawe through the Chair of Laser Technology LLT. Over the course of the next 15 years, the research cluster will have up to an additional 2 million euros at its disposal each year, on top of its own contributions, with which to systematically drive this pioneering issue forward.

“From bits to photons to atoms”

This phrase sums up the technological potential of digital photonic production. On the basis of numerical data, light can be harnessed as a tool for manufacturing customized components of almost any complexity cost-effectively in small batches. Photon-based production methods for rapid manufacturing have been a research and development topic in Aachen for many years now. One of the research team’s major achievements was the development of the first process for the fabrication of metallic dental prostheses using selective laser melting, which subsequently led to the creation of new business models in dental technology. Professor Poprawe and his team received the NRW Innovation Award 2011 for developing the SLM additive manufacturing process, now widely deployed in many sectors of industry.

Automotive and aerospace companies are currently testing the potential of such production methods to optimize component functionality and the consumption of resources. The next step involves linking the laser-based production processes to the upstream design and construction plans and the downstream processes and logistic issues. The aims of the industrial partners include channeling tailor-made components in small quantities into construction plants designed for mass production, involving customers in the design of individual components, and systematically reducing existing spare parts stores.

Digital photonic production is not limited to additive manufacturing processes. Further production strategies being systematically pursued within the scope of the BMBF funding initiative include the generation of nanometer-thin structures via abrasion using ultra-short-pulse lasers, laser polishing of metals, glass and plastic, and the generation of three-dimensional microfluidic systems using selective laser etching.

The 15-year funding period for the research cluster is also intended to be used to establish the fundamental requirements that will make digital photonic production marketable in many sectors of manufacturing industry. The actual challenge is linking planning, construction, design, material selection, production and logistics in such a way that flexible series production using additive, abrasive and functionalizing laser processes is economically viable, irrespective of batch size. Digital photonic production opens up new business models and services for the manufacturing industry, such as co-creation and mass customization. Important future fields of application include mobility, energy, health, and information and communication technology.

National center of expertise based on four pillars

In addition to the activities of the BMBF research cluster, cooperation between research and industry in Aachen is also being furthered by a unique initiative of RWTH Aachen. A new site covering approx. 250,000 square meters has been prepared to allow companies to set up business in direct proximity to the university campus, giving them the possibility to work in collaboration with the university’s 19 specialist research departments.

One of these subject areas is digital photonic production. Initiatives that already exist in this area include the Integrative Production Technology for High-Wage Countries cluster of excellence (comprising 25 research establishments with an available budget of 40 million euros spread over 5 years) and the Fraunhofer innovation cluster Integrative Production Technology for Energy-Efficient Turbomachinery, TurPro (in which the 16 industrial partners include global players such as MAN Diesel & Turbo, Siemens PG, Rolls-Royce Germany, and MTU Aero Engines, and total research funding amounts to 10.25 million euros). As a member of these research consortia, the scientists in Aachen have, for example, developed innovative production technology that significantly reduces the manufacturing costs of blisks, or blade-integrated disks. Laser material deposition enables these essential components of aircraft engines and gas turbines to be manufactured much more efficiently, with material savings of up to 60 percent and a reduction of approx. 30 percent in the overall production time. The cluster of excellence has also developed automobile components for lightweight construction that are up to 40 percent lighter than conventional components when produced using SLM, including topologically optimized wheel bearings.

“Photonic process chains” symposium

At EuroMold 2012 in Frankfurt, the BMBF will be hosting a symposium entitled “Photonic process chains – the revolution in production?” on November 28-29 in collaboration with Fraunhofer ILT, VDMA, and DEMAT. Tool and mold manufacturers, automotive industry suppliers and manufacturers, medical technology companies and representatives from the turbomachinery and aircraft industries will deliver presentations on the possibilities and challenges of intelligently linked photonic production processes. At the heart of the presentations and discussions lies the necessity to comprehend the manufacture of a product not just in terms of the individual steps involved, but rather to view the entirety of the various processes involved within the context of the complete process chain.

Further Contact
Dipl.-Phys. Christian Hinke
Head of the Integrated Production Group at the Chair for Laser Technology LLT at RWTH Aachen University
Phone +49 241 8906-352
christian.hinke@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Phone +49 241 8906-0
Fax+49 241 8906-121

Axel Bauer | Fraunhofer Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Machine Engineering:

nachricht An 'octopus' robot with eight limbs developed to clear rubble in Fukushima, Japan
23.03.2015 | Waseda University

nachricht An Apparatus For Dispensing A Rolled Material
23.03.2015 | Universiti Teknologi MARA (UiTM)

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>