Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four-Year Effort Focuses on Increasing Efficiencies of Organic Photovoltaic Solar Cells as High as 20%

24.03.2010
Global Photonic Energy Corporation, Through its Research Partner at the University of Michigan, Secures Funding and Collaboration with Dankook University of South Korea

Global Photonic Energy Corporation (“GPEC”), a leading developer of a sustainable Organic Photovoltaic (OPV™) technology, which will enable ultra low-cost solar power generation and exciting new product capabilities, said today that its research partner at the University of Michigan has secured a joint research project funded by Dankook University (“DKU”) and the South Korean government.

This investment represents a significant recognition of the groundbreaking work done by Professor Stephen R. Forrest and a strong acknowledgment of the strength of GPEC’s formidable patent portfolio. GPEC is a leading patent-holding company in organic photovoltaic technologies – with a patent portfolio that spans over 425 patents issued and pending worldwide, including many foundational patents.

New inventions derived from the DKU collaboration will further expand the extensive GPEC patent portfolio developed over 16 years with its partner researchers at Michigan and University of Southern California.

“Organic solar cell efficiencies are poised at the edge of a breakthrough. Due to our recent progress (in small molecule photovoltaics), we are confident that organic solar cell power conversion efficiencies of approximately 10 percent are within reach during the next few years. We will be building upon approaches that were developed in our labs at the University of Michigan to enable the necessary breakthroughs,” said Vice President for Research and Professor Stephen R. Forrest, noting that 10 percent OPV™ modules are commercially viable.

“The work will engage researchers at Dankook University with students and faculty from Dankook University collaborating on site at the University of Michigan. In addition, University of Michigan students and faculty will also travel to Korea for similar collaborative exchanges,” Dr. Forrest added. Dankook University, located near Seoul, hosts a student body of about 20,000 and employs a faculty of about 800. This effort championed by DKU is supported by the local state government and large commercial interests.

“The University of Michigan team will continue to work closely with its commercial partner, Global Photonic Energy Corporation, to ensure rapid scaling and prototyping of our most promising technologies developed during the course of this program,” he said.

OPV™s will generate sustainable, clean electricity using lightweight and low-cost solar cells, going far beyond today's heavy, silicon-based cells that remain too expensive to produce. GPEC’s OPV™ technology can be applied to virtually any surface using a room-temperature technique akin to spray painting. Production methods of this sort are easily adaptable to batch, continuous and so-called “roll-to-roll” manufacturing processes and hold the promise of dramatically reduced production costs.

The highly flexible and ultra-thin OPV™s will enable large-scale solar energy generation directly integrated into roofs, walls, building materials and even transparent windows in a variety of pleasing colors. OPV™s will become integrated into the initial design of residential and commercial buildings and promise to replace today's silicon panels at significantly lower cost. Other innovative OPV™ products include sun shades and umbrellas covered with thin, flexible organic solar cells. OPV™s can also be applied directly to laptops and communications devices. Tents, for military or recreational use, are further examples. Vehicle paint can become a source of solar power, as can most outdoor objects exposed to the sun. Directly applied OPV™s can be used to charge smart phones and mobile devices.

About Global Photonic Energy Corporation

Global Photonic Energy Corporation (GPEC) is the world leader in developing sustainable molecular Organic Photovoltaic (OPV™) technologies, holding more than 425 patents issued and pending. GPEC is collaborating with world-class organizations to transform the energy and photovoltaic markets. GPEC has research partnerships with the University of Southern California, the University of Michigan and Princeton University. GPEC was founded in 1994 by Sherwin I. Seligsohn, Chairman of the Board and Chief Executive Officer. Global Photonic Energy Corporation is located in Medford Lakes, N.J., minutes away from Princeton University.

Phil Allen | Global Photonic Energy
Further information:
http://www.globalphotonic.com

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>