Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Four-Year Effort Focuses on Increasing Efficiencies of Organic Photovoltaic Solar Cells as High as 20%

Global Photonic Energy Corporation, Through its Research Partner at the University of Michigan, Secures Funding and Collaboration with Dankook University of South Korea

Global Photonic Energy Corporation (“GPEC”), a leading developer of a sustainable Organic Photovoltaic (OPV™) technology, which will enable ultra low-cost solar power generation and exciting new product capabilities, said today that its research partner at the University of Michigan has secured a joint research project funded by Dankook University (“DKU”) and the South Korean government.

This investment represents a significant recognition of the groundbreaking work done by Professor Stephen R. Forrest and a strong acknowledgment of the strength of GPEC’s formidable patent portfolio. GPEC is a leading patent-holding company in organic photovoltaic technologies – with a patent portfolio that spans over 425 patents issued and pending worldwide, including many foundational patents.

New inventions derived from the DKU collaboration will further expand the extensive GPEC patent portfolio developed over 16 years with its partner researchers at Michigan and University of Southern California.

“Organic solar cell efficiencies are poised at the edge of a breakthrough. Due to our recent progress (in small molecule photovoltaics), we are confident that organic solar cell power conversion efficiencies of approximately 10 percent are within reach during the next few years. We will be building upon approaches that were developed in our labs at the University of Michigan to enable the necessary breakthroughs,” said Vice President for Research and Professor Stephen R. Forrest, noting that 10 percent OPV™ modules are commercially viable.

“The work will engage researchers at Dankook University with students and faculty from Dankook University collaborating on site at the University of Michigan. In addition, University of Michigan students and faculty will also travel to Korea for similar collaborative exchanges,” Dr. Forrest added. Dankook University, located near Seoul, hosts a student body of about 20,000 and employs a faculty of about 800. This effort championed by DKU is supported by the local state government and large commercial interests.

“The University of Michigan team will continue to work closely with its commercial partner, Global Photonic Energy Corporation, to ensure rapid scaling and prototyping of our most promising technologies developed during the course of this program,” he said.

OPV™s will generate sustainable, clean electricity using lightweight and low-cost solar cells, going far beyond today's heavy, silicon-based cells that remain too expensive to produce. GPEC’s OPV™ technology can be applied to virtually any surface using a room-temperature technique akin to spray painting. Production methods of this sort are easily adaptable to batch, continuous and so-called “roll-to-roll” manufacturing processes and hold the promise of dramatically reduced production costs.

The highly flexible and ultra-thin OPV™s will enable large-scale solar energy generation directly integrated into roofs, walls, building materials and even transparent windows in a variety of pleasing colors. OPV™s will become integrated into the initial design of residential and commercial buildings and promise to replace today's silicon panels at significantly lower cost. Other innovative OPV™ products include sun shades and umbrellas covered with thin, flexible organic solar cells. OPV™s can also be applied directly to laptops and communications devices. Tents, for military or recreational use, are further examples. Vehicle paint can become a source of solar power, as can most outdoor objects exposed to the sun. Directly applied OPV™s can be used to charge smart phones and mobile devices.

About Global Photonic Energy Corporation

Global Photonic Energy Corporation (GPEC) is the world leader in developing sustainable molecular Organic Photovoltaic (OPV™) technologies, holding more than 425 patents issued and pending. GPEC is collaborating with world-class organizations to transform the energy and photovoltaic markets. GPEC has research partnerships with the University of Southern California, the University of Michigan and Princeton University. GPEC was founded in 1994 by Sherwin I. Seligsohn, Chairman of the Board and Chief Executive Officer. Global Photonic Energy Corporation is located in Medford Lakes, N.J., minutes away from Princeton University.

Phil Allen | Global Photonic Energy
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>