Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray vision reveals how polymer solar cells wear out

13.10.2016

Scientists from Technical University of Munich have used the accurate x-ray vision provided by DESY’s radiation source PETRA III to observe the degradation of polymer solar cells. Their study suggests an approach for improving the manufacturing process to increase the long-term stability of such organic solar cells.

Unlike conventional solar cells, which are made of silicon, organic solar cells produce electricity in an active blended layer between two carbon-based materials. When one of these is a polymer, the resulting cell is often referred to as a polymer solar cell. These are particularly promising because they can be manufactured simply and cheaply.


The inner structure of the solar cell’s active layer without (left), with (centre) and after loss of solvent additive (right).

Image: Christoph Schaffer / TUM


Prof. Müller-Buschbaum with his Gruop in the laboratory

Photo: Andreas Heddergott / TUM

They can be used to make extremely lightweight, flexible and even semi-transparent solar cells using printing techniques on flexible polymer materials, opening up completely new fields of application. In general, however, organic solar cells are less efficient than silicon-based ones, and sometimes they have also a reduced lifetime.

Important inner values

The internal structure of the active layer is crucial in organic solar cells. When manufacturing them, the two materials that form the active layer have to separate out of a common solution, much like droplets of oil forming in water.

“It is important that the polymer domains formed in the process are a few tens of nanometres apart,” points out Christoph Schaffer, a PhD student in the Prof. Müller-Buschbaum, Chair for Functional Materials at TU Munich. “Only then positive and negative charge carriers can be efficiently produced in the active layer and separated from each other. If the structure is too coarse or too fine, this no longer happens, and the efficiency of the solar cell will decrease.”

Modern polymer solar cells often consist of so-called low-bandgap polymers, which absorb particularly large amounts of light. In many cases, these require the use of a solvent additive during the manufacturing process in order to achieve high efficiencies. However, this additive is controversial because it might further decrease the lifetime of the solar cells.

X-ray view into the solar cell

The scientists used DESY’s x-ray source PETRA III to study the degradation of such low-bandgap polymer solar cells with solvent additives in more detail. To this end, a solar cell of this type was exposed to simulated sunlight in a chamber, while its key parameters were continuously monitored.

Parallely, the scientists shone a narrowly collimated x-ray beam from PETRA III at the solar cell at different times, providing a picture of the internal structure of the active layer on a nanometre scale every few minutes.

“These measurements can be used to relate the structure to the performance of the solar cell and track it over time,” explains co-author Prof. Stephan Roth, who is in charge of DESY’s P03 beamline, where the experiments were conducted.

“The data reveals that domains that are on the scale of a few tens of nanometres shrink substantially during operation and that their geometric boundaries with other components disappear,” says Schaffer. At the same time, the measurements suggest that the amount of residual solvent additive decreases. The scientists attribute the measured drop in the efficiency of the solar cell to the observed decrease.

“Since there is evidence to suggest that the residual amount of solvent additive decreases, we have to assume that this process can limit the lifetime of the solar cells,” explains Müller-Buschbaum. “Therefore it is essential to come up with strategies for stabilising the structure. This could be achieved through chemical bonding between the polymer chains, or using customised encapsulating substances.”

Size is critical

In an earlier study, the Munich researchers observed the degradation of a different type of polymer solar cell. In that case, the efficiency was found to drop as a result of the active centres gradually growing in size during their operation. This suggested that it is in fact better to manufacture such solar cells with a suboptimal structure, i.e. one that is too fine, so that it can then grow to the optimum size during the first hours of operation.

The current study picks up the story where the previous one left off. “Our first study showed us that the efficiency dropped when the structure became coarser,” says Schaffer. “Exactly the opposite happens in the present study. This behaviour is precisely what we expected, because the composition of the active layer is different.”

“The materials in the first study tend to demix to a high degree,” explains Schaffer. “Here, the opposite is true, and we need the solvent additive in order to achieve the demixing of the materials that is needed to obtain high efficiencies. When the solvent additive disappears during operation, the structure becomes finer and therefore moves away from its optimum.”

Both these studies offer important approaches to optimising the manufacturing of organic solar cells, as co-author Roth points out: “The way these two studies fit together provides a wonderful example of how important synchrotron radiation has become, especially in applied research such as in the field of renewable energies.”

Publication:

Morphological Degradation in Low Bandgap Polymer Solar Cells – An In Operando Study; Christoph J. Schaffer, Claudia M. Palumbiny, Martin A. Niedermeier, Christian Burger, Gonzalo Santoro, Stephan V. Roth, and Peter Müller-Buschbaum
Advanced Energy Materials, 12.10.2016 – DOI: 10.1002/aenm.201600712

Contact:

Prof. Dr. Peter Müller-Buschbaum
Technical University of Munich
Department of Physics, E13
Chair for Functional Materials
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12451 – E-mail: muellerb@ph.tum.de

Weitere Informationen:

http://www.functmat.ph.tum.de/
https://www.tum.de/en/about-tum/news/press-releases/short/article/33448/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: PETRA III X-ray X-ray vision nanometres organic solar cells solar cell

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>