Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray vision reveals how polymer solar cells wear out

13.10.2016

Scientists from Technical University of Munich have used the accurate x-ray vision provided by DESY’s radiation source PETRA III to observe the degradation of polymer solar cells. Their study suggests an approach for improving the manufacturing process to increase the long-term stability of such organic solar cells.

Unlike conventional solar cells, which are made of silicon, organic solar cells produce electricity in an active blended layer between two carbon-based materials. When one of these is a polymer, the resulting cell is often referred to as a polymer solar cell. These are particularly promising because they can be manufactured simply and cheaply.


The inner structure of the solar cell’s active layer without (left), with (centre) and after loss of solvent additive (right).

Image: Christoph Schaffer / TUM


Prof. Müller-Buschbaum with his Gruop in the laboratory

Photo: Andreas Heddergott / TUM

They can be used to make extremely lightweight, flexible and even semi-transparent solar cells using printing techniques on flexible polymer materials, opening up completely new fields of application. In general, however, organic solar cells are less efficient than silicon-based ones, and sometimes they have also a reduced lifetime.

Important inner values

The internal structure of the active layer is crucial in organic solar cells. When manufacturing them, the two materials that form the active layer have to separate out of a common solution, much like droplets of oil forming in water.

“It is important that the polymer domains formed in the process are a few tens of nanometres apart,” points out Christoph Schaffer, a PhD student in the Prof. Müller-Buschbaum, Chair for Functional Materials at TU Munich. “Only then positive and negative charge carriers can be efficiently produced in the active layer and separated from each other. If the structure is too coarse or too fine, this no longer happens, and the efficiency of the solar cell will decrease.”

Modern polymer solar cells often consist of so-called low-bandgap polymers, which absorb particularly large amounts of light. In many cases, these require the use of a solvent additive during the manufacturing process in order to achieve high efficiencies. However, this additive is controversial because it might further decrease the lifetime of the solar cells.

X-ray view into the solar cell

The scientists used DESY’s x-ray source PETRA III to study the degradation of such low-bandgap polymer solar cells with solvent additives in more detail. To this end, a solar cell of this type was exposed to simulated sunlight in a chamber, while its key parameters were continuously monitored.

Parallely, the scientists shone a narrowly collimated x-ray beam from PETRA III at the solar cell at different times, providing a picture of the internal structure of the active layer on a nanometre scale every few minutes.

“These measurements can be used to relate the structure to the performance of the solar cell and track it over time,” explains co-author Prof. Stephan Roth, who is in charge of DESY’s P03 beamline, where the experiments were conducted.

“The data reveals that domains that are on the scale of a few tens of nanometres shrink substantially during operation and that their geometric boundaries with other components disappear,” says Schaffer. At the same time, the measurements suggest that the amount of residual solvent additive decreases. The scientists attribute the measured drop in the efficiency of the solar cell to the observed decrease.

“Since there is evidence to suggest that the residual amount of solvent additive decreases, we have to assume that this process can limit the lifetime of the solar cells,” explains Müller-Buschbaum. “Therefore it is essential to come up with strategies for stabilising the structure. This could be achieved through chemical bonding between the polymer chains, or using customised encapsulating substances.”

Size is critical

In an earlier study, the Munich researchers observed the degradation of a different type of polymer solar cell. In that case, the efficiency was found to drop as a result of the active centres gradually growing in size during their operation. This suggested that it is in fact better to manufacture such solar cells with a suboptimal structure, i.e. one that is too fine, so that it can then grow to the optimum size during the first hours of operation.

The current study picks up the story where the previous one left off. “Our first study showed us that the efficiency dropped when the structure became coarser,” says Schaffer. “Exactly the opposite happens in the present study. This behaviour is precisely what we expected, because the composition of the active layer is different.”

“The materials in the first study tend to demix to a high degree,” explains Schaffer. “Here, the opposite is true, and we need the solvent additive in order to achieve the demixing of the materials that is needed to obtain high efficiencies. When the solvent additive disappears during operation, the structure becomes finer and therefore moves away from its optimum.”

Both these studies offer important approaches to optimising the manufacturing of organic solar cells, as co-author Roth points out: “The way these two studies fit together provides a wonderful example of how important synchrotron radiation has become, especially in applied research such as in the field of renewable energies.”

Publication:

Morphological Degradation in Low Bandgap Polymer Solar Cells – An In Operando Study; Christoph J. Schaffer, Claudia M. Palumbiny, Martin A. Niedermeier, Christian Burger, Gonzalo Santoro, Stephan V. Roth, and Peter Müller-Buschbaum
Advanced Energy Materials, 12.10.2016 – DOI: 10.1002/aenm.201600712

Contact:

Prof. Dr. Peter Müller-Buschbaum
Technical University of Munich
Department of Physics, E13
Chair for Functional Materials
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12451 – E-mail: muellerb@ph.tum.de

Weitere Informationen:

http://www.functmat.ph.tum.de/
https://www.tum.de/en/about-tum/news/press-releases/short/article/33448/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: PETRA III X-ray X-ray vision nanometres organic solar cells solar cell

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>