Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Working Toward the Next Battery Breakthrough

08.06.2010
With more patents than any other woman, UB scientist brings fresh perspective to the nation's electrical grid

If battery-making is an art, then University at Buffalo scientist Esther Takeuchi is among its most prolific masters, with more than 140 U.S. patents, all in energy storage.

Takeuchi developed the battery that made possible the first implantable cardiac defibrillators, a feat that was recognized last fall with the National Medal of Technology and Innovation from President Obama. Millions of heart patients worldwide have benefited from the implantable cardiac defibrillators powered by Takeuchi's silver vanadium oxide battery. With funding from the National Institutes of Health, she is developing new cathode materials for improved implantable cardiac defibrillator batteries, with her latest advances on this project recently published in the Journal of Power Sources.

A slide show highlighting Takeuchi's biomedical research is available on YouTube: http://www.youtube.com/watch?v=Gm8MqA3u4MQ.

But now Takeuchi is applying to the electrical grid -- the vast, national network that delivers energy from suppliers to consumers -- her unique perspective on how to coax the best performance out of battery chemicals.

Having two years ago made the jump from industry to academia after 22 years, Takeuchi, a SUNY Distinguished Professor in UB's School of Engineering and Applied Sciences, may be just the scientist to find the right combination of materials that will usher in the next energy storage revolution.

"Esther has a unique perspective," says Amy Marschilok, PhD, UB research assistant professor of engineering, who has worked with Takeuchi for more than six years. "In developing the silver vanadium oxide material that now powers the implantable cardiac defibrillator, she took an idea and turned it into a functional battery."

"Now she's taking that experience and applying it to these very different areas," Marschilok continues. "Could a variation on one of the battery systems one day be applied to powering homes and buildings? That's the kind of perspective she has and it's what battery research really needs."

In the past year, Takeuchi been awarded more than $1 million in funding by several federal agencies to develop better materials for batteries and ways to prevent their degradation.

With a new project recently funded by the New York State Energy Research and Development Authority, Takeuchi and her husband, SUNY Distinguished Teaching Professor Kenneth Takeuchi, are developing new, low-cost materials for rechargeable batteries.

The focus is on developing a distributed grid where renewable power is generated closer to where it's needed, rather than in a central place and transmitted long distances, the way the current grid operates.

"One of the key challenges in moving from our fossil-fuel based system to greener, renewable forms of energy is that whether you're talking about solar or wind power, these forms of energy are intermittent," says Takeuchi.

And even though the sun may be shining or the wind may be blowing, it's unlikely that either phenomenon will occur at a constant rate over time.

"There will be fairly large fluctuations in the amount of power being generated," she says.

That makes a robust, reliable method of storing energy absolutely critical. And it's a feature that has been essential in the life-saving biomedical devices Takeuchi has worked on in the past.

"To generate energy at a usable, consistent level, we will need to couple a dependable, energy-storage system with renewable power sources," she says.

Takeuchi's work on biomedical devices has provided her with an unusual appreciation for the properties of batteries that have exceptional longevity. The typical lifetime of a battery in an implantable device is 5-10 years and Takeuchi is one of those leading the push to increase that for both biomedical and utility applications.

"Whether you're talking about the power grid, electrical vehicles or biomedical devices the quest is for low cost, longer life and rechargeability," she says.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>