Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Sensors for Commissioning of Rail Vehicles

22.11.2013
A network of wireless sensors should soon be simplifying the process of commissioning rail vehicles.

Experts from Siemens have developed a wireless sensor system that measures the mechanical loads to which a rail vehicle is subjected during operation.



As reported in the latest edition of the Siemens research magazine Pictures of the Future, the sensors measure, for example, the degree of vibration at various points. For this purpose, they require very little energy and, thanks to wireless technology, can be used without the need to lay cables.

Once the mechanical loads applying to various components are more precisely known, it will be possible to make rail vehicles more energy-efficient. Only when the static and dynamic safety of the locomotive is guaranteed can engineers begin to think about using less material. At the same time, modern locomotives consist of an ever-greater number of components from different suppliers.

To ensure that all of these different parts interact smoothly, the mechanical loads to which each is subjected must be precisely defined in the design requirements. Exact knowledge of these mechanical loads is also necessary in order to make reliable predictions regarding service life and maintenance intervals.

At present, the sensors used to measure the tensile and impact loads to which a rail vehicle is subjected while moving are all still wired via cable to a data-logging unit. Hardwired sensors are also used in wind turbines, cars, and aircraft. For rail vehicles, in particular, this involves several drawbacks.

To begin with, hardwiring all the sensors within a locomotive is a complicated job. Moreover, this exposes them to lots of electromagnetic interference. On the other hand, cables laid along the outer body of the locomotive are exposed to the full impact of the elements; while on the underside of the locomotive, they are vulnerable to damage from stones in the track bed.

Experts in sensor and wireless technology from the Siemens global research unit Corporate Technology developed the wireless sensor system as part of the government-sponsored research project Akusens. As many as 20 sensor nodes can be operated simultaneously and data from each of them logged synchronously. Fitted to each sensor node is a triaxial acceleration sensor that continuously takes measurements.

In this way, it is possible to build up a profile of the vibrations and loads to which the rail vehicle is subjected and thereby describe the long-term stresses on individual components. Similarly, the vibration data in the profile also shows how torsion affects the superstructure and running gear. To the human eye, however, such movements remain invisible, since the components affected move only a few millimeters.

Over a period of nine months, the system underwent trials on the route between Rotterdam and Muttenz, a municipality in Switzerland. The sensors were fitted to a freight locomotive operating in normal service. The wireless sensors continued to perform precisely and reliably at temperatures between -20 and +85 degrees Celsius. In the future, the sensors will also be tested in other areas of application.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht High-precision magnetic field sensing
05.12.2016 | ETH Zurich

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>