Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Sensors for Commissioning of Rail Vehicles

22.11.2013
A network of wireless sensors should soon be simplifying the process of commissioning rail vehicles.

Experts from Siemens have developed a wireless sensor system that measures the mechanical loads to which a rail vehicle is subjected during operation.



As reported in the latest edition of the Siemens research magazine Pictures of the Future, the sensors measure, for example, the degree of vibration at various points. For this purpose, they require very little energy and, thanks to wireless technology, can be used without the need to lay cables.

Once the mechanical loads applying to various components are more precisely known, it will be possible to make rail vehicles more energy-efficient. Only when the static and dynamic safety of the locomotive is guaranteed can engineers begin to think about using less material. At the same time, modern locomotives consist of an ever-greater number of components from different suppliers.

To ensure that all of these different parts interact smoothly, the mechanical loads to which each is subjected must be precisely defined in the design requirements. Exact knowledge of these mechanical loads is also necessary in order to make reliable predictions regarding service life and maintenance intervals.

At present, the sensors used to measure the tensile and impact loads to which a rail vehicle is subjected while moving are all still wired via cable to a data-logging unit. Hardwired sensors are also used in wind turbines, cars, and aircraft. For rail vehicles, in particular, this involves several drawbacks.

To begin with, hardwiring all the sensors within a locomotive is a complicated job. Moreover, this exposes them to lots of electromagnetic interference. On the other hand, cables laid along the outer body of the locomotive are exposed to the full impact of the elements; while on the underside of the locomotive, they are vulnerable to damage from stones in the track bed.

Experts in sensor and wireless technology from the Siemens global research unit Corporate Technology developed the wireless sensor system as part of the government-sponsored research project Akusens. As many as 20 sensor nodes can be operated simultaneously and data from each of them logged synchronously. Fitted to each sensor node is a triaxial acceleration sensor that continuously takes measurements.

In this way, it is possible to build up a profile of the vibrations and loads to which the rail vehicle is subjected and thereby describe the long-term stresses on individual components. Similarly, the vibration data in the profile also shows how torsion affects the superstructure and running gear. To the human eye, however, such movements remain invisible, since the components affected move only a few millimeters.

Over a period of nine months, the system underwent trials on the route between Rotterdam and Muttenz, a municipality in Switzerland. The sensors were fitted to a freight locomotive operating in normal service. The wireless sensors continued to perform precisely and reliably at temperatures between -20 and +85 degrees Celsius. In the future, the sensors will also be tested in other areas of application.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>