Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White record OLEDs of Dresden University and Novaled surpass efficiency of fluorescent tubes

14.05.2009
The Technical University of Dresden and Novaled AG have reached 90 lm/W at a brightness of 1.000 cd/m2 for a real lighting device and even 124 lm/W when using a 3D light extraction system.

White organic light-emitting diodes (OLEDs) are a promising new technology to become the next generation light source. They have the potential of much higher efficiencies than classical lighting sources.

Due to their unique features and attractive appearance white OLEDs will have a striking impact on the lighting industry. These ultra-thin large-area-emitting devices can be flexible, transparent, color-tunable and scaled to virtually any size or shape enabling completely new ways for lighting designers.

In terms of power efficiency, fluorescent tubes are a benchmark for emerging technologies with some 50-70 lm/W (considering losses in reflectors). With the latest OLED record values of the Dresden University of Technology and Novaled AG closely cooperating in this project, this benchmark was clearly surpassed.

"In our approach, we combine a novel, very energy efficient emission layer design with improved light outcoupling concepts, leading to this breakthrough" says project leader Sebastian Reineke, Physicist at Institute of Applied Photophysics (IAPP, TU Dresden).

"The power efficiencies of the record devices reach 90 lm/W even if only flat, scalable outcoupling techniques are used. With special 3D outcoupling measures, even 124 lm/W have been achieved." Both values were determined in an integrating sphere with blocked substrate edges, only taking the light into account that is emitted to the forward hemisphere, CIE color coordinates are (0.41/0.49). An in depth article is published in today's highly esteemed research journal 'nature'.

"The potential of the devices is obvious when one considers that even at the very high brightness of 5,000 cd/m2 a power efficiency of 74 lm/W is obtained," comments Prof. Karl Leo, Director of IAPP. "Thus high-intensity illuminations at very high efficiencies are possible as well".

"These results are at R&D level and further developments need to be made, e.g. for reaching commercially acceptable lifetime", says Gildas Sorin, CEO of Novaled AG. "However, the values clearly indicate a major breakthrough and qualify OLEDs for mainstream lighting applications. The Novaled PIN OLED® technology is crucial, especially for combining high efficiencies with high-brightness data. White OLEDs soon will help to reduce our carbon footprint and the Novaled doping technology will play a key role in this development", adds Sorin.

about OLEDs
OLEDs (organic light-emitting diode) are semiconductors made of thin organic material layers of only a few nanometers thickness. They emit light in a diffuse way to form an area light source. In a fast growing display market OLEDs are key part of a revolution: the dream of paper-thin, highly efficient displays with brilliant colors and great flexibility in design. OLEDs represent the future of a vast array of completely new lighting applications. By combining color with shape, organic LEDs will create a new way of decorating and personalizing personal surroundings with light. At the same time OLEDs offer the potential to become even more efficient than energy-saving bulbs.
about IAPP
The Institute of Applied Photophysics of the Dresden University of Technology is a leading research institute working on basic and applied research on organic semiconductors. In the past years, the institute has realized a number of innovations in organic devices. Furthermore, the institute has spun out a number of companies, including Novaled AG, Heliatek GmbH, Creaphys GmbH, and sim4tec GmbH.
Contact:
Sebastian Reineke,
T: +49 (0)351 463 42415,
sebastian.reineke@iapp.de
about Novaled
Novaled AG is a world leading company in the OLED field specialized in high efficiency long lifetime OLED structures and an expert in synthetic and analytical chemistry. The company offers complete solutions to the organic electronic markets, commercializing its Novaled PIN OLED® technology along with its proprietary OLED materials. Novaled has developed long term partnerships with major OLED players worldwide. Based on more than 400 patents granted or pending, Novaled has a strong IP position in OLED technology, and was named No. 1 on a list of coming world market leaders by the German newspapers Handelsblatt and Wirtschaftswoche. Main investors are eCAPITAL, Crédit Agricole Private Equity, TechnoStart, TechFund and CDC Innovation. For details please visit www.novaled.com or the currently released Asian pages www.novaled.com/jp and www.novaled.com/kr .
Contact:
Ms Anke Lemke, phone: +49 (0)351 796 5819 or anke.lemke@novaled.com

Kim-Astrid Magister | idw
Further information:
http://www.iapp.de
http://www.novaled.com/kr

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>