Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White record OLEDs of Dresden University and Novaled surpass efficiency of fluorescent tubes

14.05.2009
The Technical University of Dresden and Novaled AG have reached 90 lm/W at a brightness of 1.000 cd/m2 for a real lighting device and even 124 lm/W when using a 3D light extraction system.

White organic light-emitting diodes (OLEDs) are a promising new technology to become the next generation light source. They have the potential of much higher efficiencies than classical lighting sources.

Due to their unique features and attractive appearance white OLEDs will have a striking impact on the lighting industry. These ultra-thin large-area-emitting devices can be flexible, transparent, color-tunable and scaled to virtually any size or shape enabling completely new ways for lighting designers.

In terms of power efficiency, fluorescent tubes are a benchmark for emerging technologies with some 50-70 lm/W (considering losses in reflectors). With the latest OLED record values of the Dresden University of Technology and Novaled AG closely cooperating in this project, this benchmark was clearly surpassed.

"In our approach, we combine a novel, very energy efficient emission layer design with improved light outcoupling concepts, leading to this breakthrough" says project leader Sebastian Reineke, Physicist at Institute of Applied Photophysics (IAPP, TU Dresden).

"The power efficiencies of the record devices reach 90 lm/W even if only flat, scalable outcoupling techniques are used. With special 3D outcoupling measures, even 124 lm/W have been achieved." Both values were determined in an integrating sphere with blocked substrate edges, only taking the light into account that is emitted to the forward hemisphere, CIE color coordinates are (0.41/0.49). An in depth article is published in today's highly esteemed research journal 'nature'.

"The potential of the devices is obvious when one considers that even at the very high brightness of 5,000 cd/m2 a power efficiency of 74 lm/W is obtained," comments Prof. Karl Leo, Director of IAPP. "Thus high-intensity illuminations at very high efficiencies are possible as well".

"These results are at R&D level and further developments need to be made, e.g. for reaching commercially acceptable lifetime", says Gildas Sorin, CEO of Novaled AG. "However, the values clearly indicate a major breakthrough and qualify OLEDs for mainstream lighting applications. The Novaled PIN OLED® technology is crucial, especially for combining high efficiencies with high-brightness data. White OLEDs soon will help to reduce our carbon footprint and the Novaled doping technology will play a key role in this development", adds Sorin.

about OLEDs
OLEDs (organic light-emitting diode) are semiconductors made of thin organic material layers of only a few nanometers thickness. They emit light in a diffuse way to form an area light source. In a fast growing display market OLEDs are key part of a revolution: the dream of paper-thin, highly efficient displays with brilliant colors and great flexibility in design. OLEDs represent the future of a vast array of completely new lighting applications. By combining color with shape, organic LEDs will create a new way of decorating and personalizing personal surroundings with light. At the same time OLEDs offer the potential to become even more efficient than energy-saving bulbs.
about IAPP
The Institute of Applied Photophysics of the Dresden University of Technology is a leading research institute working on basic and applied research on organic semiconductors. In the past years, the institute has realized a number of innovations in organic devices. Furthermore, the institute has spun out a number of companies, including Novaled AG, Heliatek GmbH, Creaphys GmbH, and sim4tec GmbH.
Contact:
Sebastian Reineke,
T: +49 (0)351 463 42415,
sebastian.reineke@iapp.de
about Novaled
Novaled AG is a world leading company in the OLED field specialized in high efficiency long lifetime OLED structures and an expert in synthetic and analytical chemistry. The company offers complete solutions to the organic electronic markets, commercializing its Novaled PIN OLED® technology along with its proprietary OLED materials. Novaled has developed long term partnerships with major OLED players worldwide. Based on more than 400 patents granted or pending, Novaled has a strong IP position in OLED technology, and was named No. 1 on a list of coming world market leaders by the German newspapers Handelsblatt and Wirtschaftswoche. Main investors are eCAPITAL, Crédit Agricole Private Equity, TechnoStart, TechFund and CDC Innovation. For details please visit www.novaled.com or the currently released Asian pages www.novaled.com/jp and www.novaled.com/kr .
Contact:
Ms Anke Lemke, phone: +49 (0)351 796 5819 or anke.lemke@novaled.com

Kim-Astrid Magister | idw
Further information:
http://www.iapp.de
http://www.novaled.com/kr

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>