Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wayward Winds - Predicting The Output Of Wind Parks

25.10.2010
For the first time, scientists are comparing methods for predicting the power output of wind parks in Austria.

The project, supported by the Austrian Science Fund FWF, thus creates a basis for optimised forecasts of wind park outputs - forecasts that can be used to make better decisions about which measures to take to ensure the need for power is met.

The project focuses on forecasts for periods from six hours up to ten days. In addition to reliability, the temporal and spatial resolution of the different methods is analysed. The scientists also evaluate to what extent these methods are able to calculate the probability that these forecasts come true.

Natural energy sources are fickle. It is a problem that is manageable in hydropower, however the generation of electricity using wind or solar power is very sensitive to changes in the weather. These circumstances are made even more difficult by the growing proportion of "green electricity" in the total production of electricity. Indeed, electricity suppliers must be able to guarantee an agreed-upon supply despite this uncertainty in power generation. They therefore need accurate forecasting methods. A team at the University of Innsbruck, Austria has now begun to look for such methods for predicting power generation by wind parks in Austria.

GENERATING DATA ON POWER GENERATION
Prof. Georg Mayr, head of the team at the Institute of Meteorology and Geophysics, comments on the study method: "Put simply, we test all methods to see how well they can establish the connection between two data sets. Weather forecasting data and data from several Austrian wind parks, which indicate the real output level under different wind conditions. The forecasting method which, based on data from the past, can calculate the real energy generation most accurately, is likely the best method for predicting future output."

Prof. Mayr´s team is now comparing new methods with those already published. In 2006, three methods proved particularly promising: the "logistic Gaussian regression", the "non-homologous Gaussian regression" and the "ensemble dressing". However, the drawback of all three methods is the large amount of input data that they require: data on atmospheric conditions from at least two years.

The method referred to as "analogous" is another approach: It means that a situation is found in the past, which matches the current situation (which serves as input data). Thanks to the knowledge of how the past situation affected the output, the output for the next six hours or up to ten days can be mathematically derived from the current situation.

Besides the reliability and the spatial and temporal resolution of the forecasts, Prof. Mayr is interested in the "probability", as he explains: "The ensemble dressing method can consider the probability that its own forecasts will be accurate. Also, variations in the initial scenario and the resulting impact on the prediction are calculated. If there are few discrepancies, the probability that the predicted outcome will occur is high; if there are large discrepancies, the probability is lower".

TERABYTES & MEGAWATTS
Of course, such calculations accumulate a considerable amount of data. Prof. Mayr has therefore already "forewarned" the central IT services at the University of Innsbruck that his group will be processing a few terabytes of data. This huge "number crunching" effort is well worth it: in the period from 2000 to 2007 alone, the global proportion of wind energy (in the total energy generation) increased by 500 %. At the same time, the energy market is being liberalised and prices are guided by supply and demand, or, more accurately, "scheduled supply and scheduled demand". It can therefore be said with great certainty that a good forecasting method from an FWF project will be worth a lot.
Scientific contact:
Prof. Georg Mayr
University of Innsbruck
Institute of Meteorology and Geophysics
Innrain 52
6020 Innsbruck
T: +43 / 512 / 507 - 5459
E: georg.mayr@uibk.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
T: +43 / 1 / 505 67 40 - 8111
E: stefan.bernhardt@fwf.ac.at
Copy Editing & Distribution
PR&D - Public Relations for Research & Education Mariannengasse 8 1090 Vienna
T: +43 / 1 / 505 70 44
E: contact@prd.at
W: http://www.prd.at

Raphaela Spadt | PR&D
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv201010-en.html

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>