Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste could generate up to 7 percent of electricity in Spain

23.02.2010
Researchers from the University of Zaragoza (UNIZAR) have calculated the energy and economic potential of urban solid waste, sludge from water treatment plants and livestock slurry for generating electricity in Spain. These residues are alternative sources of renewable energy, which are more environmentally friendly and, in the case of solid urban waste, more cost effective.

Using waste to generate electricity has economic and environmental advantages. "It gives added value to waste, because it can be seen as a type of fuel with zero cost, or even a negative cost if taxes are paid to collect it", Norberto Fueyo, lead author of the study and a researcher at the Fluid Mechanics Group of the UNIZAR, tells SINC.

According to the researcher, generating electricity from waste avoids "pernicious" impacts. Waste in landfill sites releases methane and other polluting gases, so incinerating solid urban waste will reduce the volume of waste that reaches the landfill sites in the first places, as well as the implicit risks of landfills themselves (possible emission of methane into the atmosphere).

The study, published in the latest issue of the journal Renewable Energy, has shown that waste in Spain could generate between 8.13 and 20.95 TWh (terawatt hours). "This electricity generation was 7.2% of electricity demand in 2008", says Fueyo.

The researchers stress that the amount of methane generated from different kinds of residues is equivalent to 7.6% of gas consumption in 2008.

In terms of the economic cost, "solid urban waste is the most cost-effective", according to the researcher, because local authorities carry out the waste collection and local inhabitants pay for it. Since the waste is transported to large landfill sites or waste treatment plants, installing electricity generation systems "could take advantage of economies of scale due to the large volumes involved".

Cost depends on the heat generated

According to the study, incineration of waste and degasification of landfill sites are the electricity generation technologies with lowest financial cost. Producing electric energy through anaerobic digestion (a biological process in which organic matter decomposes into biogas in the absence of oxygen and through the action of a group of specific bacteria) is much more expensive.

"However, its profitability relies on being able to get value out of the heat generated during the process", explains Fueyo, who says this technique is "not competitive, but makes use of the heat to offset the costs of generation". However, the researchers point out that "directly applying this waste to agricultural land as fertiliser could contaminate groundwater with nitrates".

In order to evaluate the potential and the cost of generating electricity, the researchers applied the methodology in municipal areas (in the case of solid urban waste and sludge from water treatment plants) and regional areas (for livestock slurry) throughout the whole of Spain.

The work shows that the centre and south of the Iberian Peninsula, the Balearic and Canary Islands have the "greatest interest" in putting technologies into place to use solid urban waste.

In terms of using water treatment plant sludge, the coastal areas of Galicia. Valencia and Alicante, as well as central and southern Spain, were also areas of interest. The study also shows that certain areas of Aragon, Castilla-La-Mancha, Castilla-y-León, Extremadura, Galicia and Andalusia "would be effective" for using livestock slurry.

The EU 20-20-20 package

The research into electricity generation comes in response to the European Union (EU) objective to fulfil the 20-20-20 package for the year 2020, in other words to substitute 20% of the total energy consumed in Spain for energy from renewable resources, reduce CO2 emissions by 20% in comparison with 1990 figures, increase biofuels used in transport by 10%, and achieve energy savings of 20%. "For Spain, each one of these targets alone is a challenge, which becomes much bigger when they are all taken together", underscores the scientist.

Norberto Fueyo says the most problematic objective is that relating to increasing the amount of biofuels used in transport by 10%. "It is not achievable and is socially and environmentally questionable, because of the amount of land it requires and because it means using foodstuffs to produce fuel".

Even if the figure of 10% of biofuels in transport is achieved, "there will need to be an increase of around 45% in the contribution of renewables (including hydroelectric energy) to electricity generation in order to achieve a figure of 20% of renewable energy within total consumption", the expert says. The scientist adds that, in order to achieve the objective, it will be "essential" to promote energy saving and efficiency "and consider all possible sources of renewable energy, including waste".

References:

Gómez, Antonio; Zubizarreta, Javier; Rodrígues, Marcos; Dopazo, César; Fueyo, Norberto. "Potential and cost of electricity generation from human and animal waste in Spain" Renewable Energy 35(2): 498-505, febrero de 2010.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>