Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tongue drive system goes inside the mouth to improve performance and user comfort

20.02.2012
The Tongue Drive System is getting less conspicuous and more capable. Tongue Drive is a wireless device that enables people with high-level spinal cord injuries to operate a computer and maneuver an electrically powered wheelchair simply by moving their tongues.

The newest prototype of the system allows users to wear an inconspicuous dental retainer embedded with sensors to control the system. The sensors track the location of a tiny magnet attached to the tongues of users. In earlier versions of the Tongue Drive System, the sensors that track the movement of the magnet on the tongue were mounted on a headset worn by the user.



The circuitry for the new intraoral Tongue Drive System developed at Georgia Tech is embedded in this dental retainer worn in the mouth (right). The system interprets commands from seven different tongue movements to operate a computer (left) or maneuver an electrically powered wheelchair. Credit: Georgia Tech/Maysam Ghovanloo

"By moving the sensors inside the mouth, we have created a Tongue Drive System with increased mechanical stability and comfort that is nearly unnoticeable," said Maysam Ghovanloo, an associate professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology.

The new intraoral Tongue Drive System was presented and demonstrated on Feb. 20, 2012 at the IEEE International Solid-State Circuits Conference in San Francisco. Development of the system is supported by the National Institutes of Health, National Science Foundation, and Christopher and Dana Reeve Foundation.

The new dental appliance contains magnetic field sensors mounted on its four corners that detect movement of a tiny magnet attached to the tongue. It also includes a rechargeable lithium-ion battery and an induction coil to charge the battery. The circuitry fits in the space available on the retainer, which sits against the roof of the mouth and is covered with an insulating, water-resistant material and vacuum-molded inside standard dental acrylic.

"One of the problems we encountered with the earlier headset was that it could shift on a user's head and the system would need to be recalibrated," explained Ghovanloo. "Because the dental appliance is worn inside the mouth and molded from dental impressions to fit tightly around an individual's teeth with clasps, it is protected from these types of disturbances."

When in use, the output signals from the sensors are wirelessly transmitted to an iPod or iPhone. Software installed on the iPod interprets the user's tongue commands by determining the relative position of the magnet with respect to the array of sensors in real-time. This information is used to control the movements of a cursor on the computer screen or to substitute for the joystick function in a powered wheelchair.

Ghovanloo and his team have also created a universal interface for the intraoral Tongue Drive System that attaches directly to a standard electric wheelchair. The interface boasts multiple functions: it not only holds the iPod, but also wirelessly receives the sensor data and delivers it to the iPod, connects the iPod to the wheelchair, charges the iPod, and includes a container where the dental retainer can be placed at night for charging.

In preliminary tests, the intraoral device exhibited an increased signal-to-noise ratio, even when a smaller magnet was placed on the tongue. That improved sensitivity could allow additional commands to be programmed into the system. The existing Tongue Drive System that uses a headset interprets commands from seven different tongue movements.

The ability to train the system with additional commands – as many commands as an individual can comfortably remember – and having all of the commands available to the user at the same time are significant advantages over the common sip-n-puff device that acts as a simple switch controlled by sucking or blowing through a straw.

The researchers plan to begin testing the usability of the intraoral Tongue Drive System by able-bodied individuals soon and then move onto clinical trials to test its usability by people with high-level spinal cord injuries.

In recent months, Ghovanloo and his team have recruited 11 individuals with high-level spinal cord injuries to test the headset version of the system at the Atlanta-based Shepherd Center and the Rehabilitation Institute of Chicago. Trial participants received a clinical tongue piercing and tongue stud that contained a tiny magnet embedded in the upper ball. They repeated two test sessions per week during a six-week period that assessed their ability to use the Tongue Drive System to operate a computer and navigate an electric wheelchair through an obstacle course.

"During the trials, users have been able to learn to use the system, move the computer cursor quicker and with more accuracy, and maneuver through the obstacle course faster and with fewer collisions," said Ghovanloo. "We expect even better results in the future when trial participants begin to use the intraoral Tongue Drive System on a daily basis."

Georgia Tech graduate students Abner Ayala-Acevedo, Xueliang Huo, Jeonghee Kim, Hangue Park and Xueli Xiao, and former postdoctoral fellow Benoit Gosselin also contributed to this work.

Abby Robinson | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>