Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The virtual keyboard can soon be a reality

06.05.2014

Today we are constantly online and integrated in a virtual existence.

Wii and other game modules make it possible to engage the entire body when playing, and soon Google Glasses and similar products will open up a whole new world. Shortly there will also be a virtual keyboard on the market, created by researchers at Mälardalen University in Sweden. This is advanced equipment for the modern user which will change the potential for working and using new technology.

– Virtual technology is the future. It allows you to be available everywhere even without a mobile phone, a tablet, or a computer. We have the ideas and the technology and now we want to develop prototypes. To do so, we need more funding, which is often the main challenge for research, says Lars Asplund, Professor Emeritus in Robotics at Mälardalen University.

The research project which provides the basis for further development has been ongoing between 2005 and 2013, with a focus on robot vision, but that technology turns out to be the solution for an accessory that Google Glasses will require. The keyboard is constituted by two bracelets which are placed around the wrists or over the hands. Through sensors it feels the position of the fingertips, the surface and the movements of the user and can therefore ascertain which key is touched, while the user can see it for instance in a pair of Google Glasses. The two units will also function as a computer mouse and above all as a unit for gesture input.

– Keyboards today look almost the same, and work in almost the same way, as 19th-century typewriters. Our virtual keyboard makes possible a completely new form of interaction and offers relative positions which may for instance decrease the risk for repetitive strain injury, says Lars Asplund, Professor Emeritus in Robotics at Mälardalen University.

There are many areas of application for the new innovation, both for businesses and for individuals, such as use in small spaces, for interviews to avoid the barrier of the journalist’s computer screen, and by individuals who want to avoid the ergonomic problems that are common when using a physical keyboard and computer mouse. However, for the virtual keyboard to be a reality, more funding is required.

– This project has a great potential and can be completed in a year, but we need another 10-15 million SEK (10,9-16,4 million Euro) to develop the hardware design, manufacture a series, and launch the product on the market, says Lars Asplund, Professor Emeritus in Robotics at Mälardalen University.

For more information, please contact
Lars Asplund, Professor Emeritus in Robotics at Mälardalen University and the initiator of the virtual keyboard Lars.asplund@mdh.se or +46705-41 46 68

Pressofficer Malin Swanström; +46-21 151 720 or malin.swanstrom@mdh.se

Malin Swanström | idw - Informationsdienst Wissenschaft
Further information:
http://www.vr.se

Further reports about: Robotics Wii game modules movements problems prototypes

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>