Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All around solar!

15.12.2010
Versatile Cluster plant at the Fraunhofer FEP opens up new perspectives for manufacturing thin film solar cells.

The new plant will allow Fraunhofer FEP researchers in Dresden to combine key vacuum technologies in any desired sequence and hence accelerate the development of favorably-priced solar cells.

If we follow the news, then the consequences of climate change appear to be already upon us. Abundantly clear also is that the availability of fossil fuels will be limited for the next generation. There is hence very broad consensus amongst the populace and politicians of the need to switch to alternative sources of energy provision as soon as possible.

The political will has been indicated, ambitious targets have been set, and the photovoltaic technology sector is booming. So what is holding us back from generating our electricity from solar energy? The main reasons for many homeowners not opting for photovoltaic systems are too high set-up costs and too inefficient solar cells.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP is pursuing a very promising approach for drastically reducing the cost of manufacturing solar cells. Fraunhofer FEP researchers have long been involved in the development of vacuum-based technologies which allow large areas to be coated and structured at favorable cost.

The commissioning of the new vacuum cluster plant was completed on Monday 13 December 2010, and is unique in Germany for the combination of processes it allows. The cluster plant was developed as part of the »Solarfabrik 2020« initiative, in collaboration with our regional industrial partner CREAVAC (Creative Vakuumbeschichtung GmbH). The project was financed under the federal government’s Economic Stimulus Program 1. The plant will now allow Fraunhofer FEP scientists to combine important technologies for manufacturing material-efficient thin film solar cells.

A solar cell comprises several layers, namely at least one light-absorbing layer, transparent contact layers, and an encapsulation layer must be applied to the support material. The optimum coating and processing method is usually different for each layer. In order for the whole industrial procedure to be as efficient as possible, these methods must be optimally adapted to each other and the overall processing sequence must be free of interruption. The benefit of the new cluster plant is that the Fraunhofer FEP now has a facility to combine any desired sequence of surface technologies without having to release the vacuum.

Frank-Holm Rögner, head of the business unit »Electron Beam Processes« at the Fraunhofer FEP, summarizes the advantages: »The cluster plant puts us in a position of being able to directly integrate newly developed processes into the overall production chain. This allows developments in the area of thin film photovoltaic technology to be significantly accelerated! The plan is to invest further, and create similar facilities for high-purity vacuum processes and structured coatings, including for other applications of resource-efficient energy technology.« The knowledge acquired from the plant will pave the way for industrial in-line plants for the mass production of thin film solar cells. The high production rates using vacuum processes promise coating costs of at maximum a few euros per square meter.

Further information on »Solarfabrik 2020« can be found at: http://www.solarfabrik2020.de

Scientific contact:

Dr. Marita Mehlstäubl
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-214
marita.mehlstaeubl@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/enu/versanl/ERICA.asp
http://www.solarfabrik2020.de

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>