Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Grid Test as Part of the Energy Transition

23.12.2013
At a special lab in Erlangen, Siemens' global research unit Corporate Technology (CT) is testing how smart grids will work in the future.

As reported in the research magazine Pictures of the Future, researchers in the 170 square meter lab can simulate almost any smart grid because the facility is equipped with control cabinets full of batteries as well as with a cogeneration plant, an emergency power unit, an adjustable local grid transformer, various loads and converters, two refrigeration units, and a water purification plant.



The team can create a wide variety of miniature versions of smart grids. That's because the lab's diesel generator can also take on the roles of a combined-cycle power plant or a biomass reactor. In these simulations, the ratio of fluctuating to conventional sources of energy corresponds to that of the real-life electricity market. Smart grids will become common in a few years. When fluctuating sources of energy further increase their share of the grid, smart control systems have to ensure that the distributed energy producers interact perfectly with large power plants, as otherwise there is a risk of instabilities and even power outages that can cause considerable damage.

This is exactly what the CT researchers in Erlangen are preventing in their tests. Among other things, they simulate a high level of incident solar radiation so that the photovoltaic system's converter supplies a lot of electricity. When this causes an excess supply of energy in the grid, voltage and frequency increase. To deal with this situation, the researchers adjust the converter's parameters so that they help stabilize the grid instead of unrestrainedly feeding their maximum output into the power network.

The test lab also has a scenario in which the power grid breaks down. The distributed energy producers such as the battery and the photovoltaic system then have to get the power grid up and running again. To perform such a black start, the researchers synchronize the various components so that they all raise the supply voltage to the specified value at the same rate and the power demand of the associated loads is equally distributed between the various energy sources. The researchers set the internal control units so that the converters synchronize themselves on the basis of the voltage and frequency information and ensure stable operation.

The work at the lab in Erlangen provides researchers with a foretaste of the challenges that grid operators face during Germany's energy transition. The operators have to connect countless photovoltaic systems, wind turbines, and biomass reactors with conventional power stations and energy storage systems and create a stable power grid. From 2011 until the fall of 2013, Siemens and the power utility company Allgäuer Überlandwerk studied how this could look in practice. To do this, the two partners examined the network around the village of Wildpoldsried in Bavaria. Here, the village's 2,500 inhabitants sometimes produce five times as much electricity from renewable sources as they themselves consume.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>