Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Grid Technology May Help Sustain Vital Social Services During Blackouts

11.07.2012
'Keeping the lights on' can be a challenge during extreme weather and other disasters like those affecting the East Coast of the U.S. this summer, but real options may be available to avoid some of the power-related crises that follow upon such events.

Leading researchers from Carnegie Mellon University suggest that rethinking the solution to sustaining electric power—namely, starting small—could keep critical services going, even when the high-voltage 'grid' is crippled.

It is worth noting that the U.S. military is already taking steps to protect its power supplies in the event of a massive grid failure by adopting small, local energy technologies, and California Governor Jerry Brown recently announced that he wants 12,000 megawatts of such power supplies in his state.

This natural disaster demonstrated that, despite ongoing efforts to improve electric power transmission reliability, the risk of prolonged regional blackouts remains a significant concern. To combat future widespread and extended power outages, Carnegie Mellon University researchers have devised a strategy to use local distributed electricity generation, distribution automation, and smart meters to form small electricity “islands” that would support critical social services in the event of a substantial disruption resulting from extreme weather, terrorism, or other causes.

Distributed generation (DG) collects and distributes electricity from many small energy sources rather than relying on large centralized power facilities. Carnegie Mellon University researchers Anu Narayanan and M. Granger Morgan examined the incremental cost of adding DG units and smart meters to a hypothetical community of 5,000 households covering an area of 5 km2. The research was conducted with funding from the John D. and Catherine T. MacArthur Foundation, the Gordon and Betty Moore Foundation, and Carnegie Mellon University. The study, titled “Sustaining Critical Social Services During Extended Regional Power Blackouts,” appears in the July 2012 issue of Risk Analysis, published by the Society for Risk Analysis.

Under normal operation, large centralized utility generators send electricity along a high-voltage transmission system to a low-voltage distribution system that ultimately delivers power to homes, schools, police stations and other local consumers. An extreme disturbance such as a hurricane can disrupt the high-voltage transmission system and eliminate power to entire regions. Under the Narayanan and Morgan strategy, electricity circuits would be manually or automatically rerouted to form isolated energy islands powered by local DG units. To achieve a “smart grid” DG system, utility companies would need to install smart meters that can efficiently disconnect non-critical loads, add automated components to reroute electricity circuits, and upgrade fault-handling equipment and control software to ensure the smaller grid’s reliability.

Community social services deemed “critical” during a substantial power outage could include a subset of community grocery stores, gas stations, cellular telephone base stations, streetlights, police stations, and schools. The authors estimate that for their model community 350 kW of power would be necessary to continue these services during a blackout, but this limited power supply could be cycled between the services. For example, the school could be operated in day shifts for elementary, middle, and high school students and then close at night, when the police station could be powered at full capacity. Beyond those basic necessities, communities could invest in backup power for water and sewage treatment, traffic lights, and the local jail. Additional arrangements would need to provide for temperature control if a blackout occurred in a region or season that required heating or cooling for basic survival. Most hospitals, airports, and radio and television broadcasting stations already possess independent emergency backup power supplies.

Narayanan and Morgan studied the costs of building regional DG circuits to support critical social services. Scenarios vary based on whether a region has zero, limited, or sufficient existing DG capacity. If enough DG units already exist within a region, the costs include the fee to purchase the options to acquire 350 kW during a blackout. If a region has insufficient existing DG infrastructure, the costs of installing new DG units and providing maintenance are key. Other considerations include the use of public or private financing options to fund a DG project and the probability of an extended regional blackout. The researchers estimate that the cost per household for implementing various DG scenarios would be $9 to $22 per year for risk probabilities ranging from 0.01 to 0.0001. Even the highest cost estimate is far less than 1 percent of an assumed median household income of $50,000, providing support for switching to DG units. The potential costs to a community resulting from a large power outage also must be factored into decisions about whether to invest in these upgrades.

Strategically constructing regional DG circuits may help to reduce the effects of catastrophic electricity failure resulting from natural or human-triggered events, ensuring that critical services necessary for the health and safety of communities will be provided. The authors note that this strategy would be most effectively implemented on a statewide or regional level to prevent the influx of citizens from neighboring communities that lack such an emergency power procedure to ensure critical social services.

Narayanan notes, “There are currently a few obstacles to implementing such a strategy, including state laws that prevent the deployment of cost-effective combined heat and power (CHP) ‘microgrids,’ and the lack of incentive for power companies to invest in such a system. We have the technology to make our critical services less vulnerable to large blackouts. What we need now are the right policy initiatives to make it happen.”

Risk Analysis: An International Journal is published by the nonprofit Society for Risk Analysis (SRA). SRA is a multidisciplinary, interdisciplinary, scholarly, international society that provides an open forum for all those who are interested in risk analysis. Risk analysis is defined broadly to include risk assessment, risk characterization, risk communication, risk management, and policy relating to risk, in the context of risks of concern to individuals, to public and private sector organizations, and to society at a local, regional, national, or global level. www.sra.org

Contact: Steve Gibb, 202.422.5425 skgibb@aol.com to arrange an interview with the author(s).
Note to editors: This study is available upon request from Steve Gibb or here:
http://onlinelibrary.wiley.com/doi/10.1111/j.1539-6924.2011.01726.x/full

Steve Gibb | Newswise Science News
Further information:
http://www.sra.org

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>