Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon and nitride LEDs integrated onto a single chip for one-bit digital counters

24.03.2011
Silicon-based semiconductor devices dominate the microelectronics industry and are used for the fabrication of high density integrated circuits comprising of memory and processing devices.

However, silicon has an indirect band gap, which severely limits its use for fabricating photonic devices such as light emitting diodes (LEDs) and lasers. A innovative solution to this problem would be the integration of silicon devices with LEDs produced using direct band gap compound semiconductors, in the form of optoelectronic integrated circuits (OEICs).

Here, Akihiro Wakahara and colleagues at Toyohashi University of Technology (Toyohashi Tech) demonstrate the first realization of a one-bit counter circuit OEIC with an optical output consisting of silicon field effect transistors integrated with gallium phosphide nitride (GaPN) LEDs on a single chip.

The monolithic integrated circuits were fabricated using lattice matched Si/GaPN/Si heterostructures grown on silicon substrates in a dual chamber molecular beam epitaxy (MBE) system. Notably, growth of the silicon capping layer at a high temperature of 850¡æ led to a dramatic reduction of the threshold voltage to -2.1 V and an increase of the channel mobility of the p-MOSFET to 82 cm2Vs. This improvement is attributed to a decrease in phosphorus incorporation during the growth of the capping layer.

The one-bit counter circuit fabricated using the n-Si/p-GaPN/n-GaPN/GaP/n-Si heterostructure exhibited normal operation, where red light emission from the input and output indicators was in synchronization with the input and output logical voltages.

Reference
K.Yamane1, K. Noguchi1, S. Tanaka1, Y. Furukawa1, H. Okada2, H. Yonezu1, and A. Wakahara1,2Operation of Monolithically-Integrated Digital Circuits with Light Emitting Diodes Fabricated in Lattice-Matched Si/III¨CV¨CN/Si HeterostructureApplied Physics Express 3, 074201, (2010)Abstract and restricted links: http://apex.jsap.jp/link?APEX/3/074201/DOI: 10.1143/APEX.3.074201 1Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan2Intelligent Sensing System Research Center, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, JapanRelated information

Frontiers of Intelligent Sensing:http://www.gcoe.tut.ac.jp/english/gaiyou/index4.html

Robin Bisson | Research asia research news
Further information:
http://www.tut.ac.jp/english/
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>