Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens starts new energy transition research project in Germany

11.09.2014

Siemens has started a new project – IREN2 (Future Viable Networks for Integration of Renewable Energy systems) – in Wildpoldsried in the Allgäu region in connection with Germany's transition to a new energy mix.

Siemens is working on this project as part of a consortium consisting of Hochschule Kempten (Kempten University), RWTH Aachen, Allgäuer Überlandwerke utility, and IT company ID.KOM. The project will investigate innovative power grid structures and their operational management based on technical and economic criteria.

The goal is to discover how energy systems with distributed power generation and additional components like battery storage devices, block district heating power plants, biogas plants, and diesel generators can be technically and economically optimized.

Over the project period of three years, the research consortium also plans to test microgrids – regional, self-contained, smart power distribution grids – as island networks, and they will also assess the use and operation of microgrids as so-called topological power plants.

The smart grid infrastructure already installed in Wildpoldsried will be used in the project as will the results and experiences acquired in the pilot project IRENE (Integration of Renewable Energies and Electromobility), which was successfully concluded there at the end of 2013.

The pilot installation in the district of Wildpoldsried in the network region of Allgäuer Überlandwerke will serve as the foundation for the project but will be expanded during the project in order to implement, study, and analyze the planned concepts.

The existing smart power supply grid already in place in the Allgäu is especially well suited as a platform for ongoing investigations into the reliable and stable operation of island networks and topological power plants. Island networks are supply areas that are not connected to other networks and therefore have special requirement in terms of the operational management system. "Topological power plant" is the term used to describe network sections in which loads and power generators can be controlled jointly like a conventional power plant.

Siemens and the partner companies are researching network structures of this kind according to economic and technical criteria. The studies based on economic criteria are aimed first and foremost at finding the most cost-effective development variant among the diverse grid structures and analyzing different operating strategies.

The technical analyses include the interactions between the power generators and loads, measurement and control technology, stability studies, development of protection concepts, and the implementation of intelligent network structures for applying information and communication technology.

Today the volume of electrical power generated from renewable energy sources in Wildpoldsried is five times higher than the community's own requirement. During the predecessor project IRENE, which ran from mid-2011 to the end of 2013, a smart grid was created in this Allgäu community in order to balance power generation and consumption and so keep the network stable. Two controllable distribution transformers and a stationary battery storage system were installed for this purpose.

The smart grid is also equipped with an elaborate measurement system, a modern communications infrastructure, and renewable distributed power generators including photovoltaic and biogas plants. This creates the essential basis for scientifically investigating the optimal operation of independent island networks and topological power plants and testing them in practice.

Wildpoldsried offers ideal conditions for allowing theoretical results to be verified on an actual intelligent energy system. The IREN2 research project will provide lay the foundation for a future renewable energy system that balances the conflicting interests of regulation and the energy market.

Energy-efficient, eco-friendly solutions for setting up intelligent power supply networks (smart grids) and the associated service are part of Siemens' Environmental Portfolio. Approximately 43 percent of its total revenue stems from green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology. 

Siemens AG (Berlin and Munich) is a global powerhouse in electronics and electrical engineering, operating in the fields of industry, energy and healthcare as well as providing infrastructure solutions, primarily for cities and metropolitan areas. For over 165 years, Siemens has stood for technological excellence, innovation, quality, reliability and internationality. The company is one of the world's largest providers of environmental technologies. Around 43 percent of its total revenue stems from green products and solutions. In fiscal 2013, which ended on September 30, 2013, revenue from continuing operations totaled €74.4 billion and income from continuing operations €4.2 billion. At the end of September 2013, Siemens had around 362,000 employees worldwide on the basis of continuing operations. Further information is available on the Internet at: www.siemens.com

Reference Number: ICSG201409052e

Contact

Mr. Dietrich Biester
Smart Grid Division

Siemens AG

Gugelstr. 65

90459   Nuremberg

Germany

Tel: +49 (911) 433-2653

Dietrich Biester | Siemens Infrastructure & Cities

Further reports about: Division Grid Smart battery conditions conventional measurement networks structures

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>