Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens starts new energy transition research project in Germany

11.09.2014

Siemens has started a new project – IREN2 (Future Viable Networks for Integration of Renewable Energy systems) – in Wildpoldsried in the Allgäu region in connection with Germany's transition to a new energy mix.

Siemens is working on this project as part of a consortium consisting of Hochschule Kempten (Kempten University), RWTH Aachen, Allgäuer Überlandwerke utility, and IT company ID.KOM. The project will investigate innovative power grid structures and their operational management based on technical and economic criteria.

The goal is to discover how energy systems with distributed power generation and additional components like battery storage devices, block district heating power plants, biogas plants, and diesel generators can be technically and economically optimized.

Over the project period of three years, the research consortium also plans to test microgrids – regional, self-contained, smart power distribution grids – as island networks, and they will also assess the use and operation of microgrids as so-called topological power plants.

The smart grid infrastructure already installed in Wildpoldsried will be used in the project as will the results and experiences acquired in the pilot project IRENE (Integration of Renewable Energies and Electromobility), which was successfully concluded there at the end of 2013.

The pilot installation in the district of Wildpoldsried in the network region of Allgäuer Überlandwerke will serve as the foundation for the project but will be expanded during the project in order to implement, study, and analyze the planned concepts.

The existing smart power supply grid already in place in the Allgäu is especially well suited as a platform for ongoing investigations into the reliable and stable operation of island networks and topological power plants. Island networks are supply areas that are not connected to other networks and therefore have special requirement in terms of the operational management system. "Topological power plant" is the term used to describe network sections in which loads and power generators can be controlled jointly like a conventional power plant.

Siemens and the partner companies are researching network structures of this kind according to economic and technical criteria. The studies based on economic criteria are aimed first and foremost at finding the most cost-effective development variant among the diverse grid structures and analyzing different operating strategies.

The technical analyses include the interactions between the power generators and loads, measurement and control technology, stability studies, development of protection concepts, and the implementation of intelligent network structures for applying information and communication technology.

Today the volume of electrical power generated from renewable energy sources in Wildpoldsried is five times higher than the community's own requirement. During the predecessor project IRENE, which ran from mid-2011 to the end of 2013, a smart grid was created in this Allgäu community in order to balance power generation and consumption and so keep the network stable. Two controllable distribution transformers and a stationary battery storage system were installed for this purpose.

The smart grid is also equipped with an elaborate measurement system, a modern communications infrastructure, and renewable distributed power generators including photovoltaic and biogas plants. This creates the essential basis for scientifically investigating the optimal operation of independent island networks and topological power plants and testing them in practice.

Wildpoldsried offers ideal conditions for allowing theoretical results to be verified on an actual intelligent energy system. The IREN2 research project will provide lay the foundation for a future renewable energy system that balances the conflicting interests of regulation and the energy market.

Energy-efficient, eco-friendly solutions for setting up intelligent power supply networks (smart grids) and the associated service are part of Siemens' Environmental Portfolio. Approximately 43 percent of its total revenue stems from green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology. 

Siemens AG (Berlin and Munich) is a global powerhouse in electronics and electrical engineering, operating in the fields of industry, energy and healthcare as well as providing infrastructure solutions, primarily for cities and metropolitan areas. For over 165 years, Siemens has stood for technological excellence, innovation, quality, reliability and internationality. The company is one of the world's largest providers of environmental technologies. Around 43 percent of its total revenue stems from green products and solutions. In fiscal 2013, which ended on September 30, 2013, revenue from continuing operations totaled €74.4 billion and income from continuing operations €4.2 billion. At the end of September 2013, Siemens had around 362,000 employees worldwide on the basis of continuing operations. Further information is available on the Internet at: www.siemens.com

Reference Number: ICSG201409052e

Contact

Mr. Dietrich Biester
Smart Grid Division

Siemens AG

Gugelstr. 65

90459   Nuremberg

Germany

Tel: +49 (911) 433-2653

Dietrich Biester | Siemens Infrastructure & Cities

Further reports about: Division Grid Smart battery conditions conventional measurement networks structures

More articles from Power and Electrical Engineering:

nachricht Harvesting the Sun for Power and Produce
24.11.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Batteries with better performance and improved safety
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>