Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens starts new energy transition research project in Germany

11.09.2014

Siemens has started a new project – IREN2 (Future Viable Networks for Integration of Renewable Energy systems) – in Wildpoldsried in the Allgäu region in connection with Germany's transition to a new energy mix.

Siemens is working on this project as part of a consortium consisting of Hochschule Kempten (Kempten University), RWTH Aachen, Allgäuer Überlandwerke utility, and IT company ID.KOM. The project will investigate innovative power grid structures and their operational management based on technical and economic criteria.

The goal is to discover how energy systems with distributed power generation and additional components like battery storage devices, block district heating power plants, biogas plants, and diesel generators can be technically and economically optimized.

Over the project period of three years, the research consortium also plans to test microgrids – regional, self-contained, smart power distribution grids – as island networks, and they will also assess the use and operation of microgrids as so-called topological power plants.

The smart grid infrastructure already installed in Wildpoldsried will be used in the project as will the results and experiences acquired in the pilot project IRENE (Integration of Renewable Energies and Electromobility), which was successfully concluded there at the end of 2013.

The pilot installation in the district of Wildpoldsried in the network region of Allgäuer Überlandwerke will serve as the foundation for the project but will be expanded during the project in order to implement, study, and analyze the planned concepts.

The existing smart power supply grid already in place in the Allgäu is especially well suited as a platform for ongoing investigations into the reliable and stable operation of island networks and topological power plants. Island networks are supply areas that are not connected to other networks and therefore have special requirement in terms of the operational management system. "Topological power plant" is the term used to describe network sections in which loads and power generators can be controlled jointly like a conventional power plant.

Siemens and the partner companies are researching network structures of this kind according to economic and technical criteria. The studies based on economic criteria are aimed first and foremost at finding the most cost-effective development variant among the diverse grid structures and analyzing different operating strategies.

The technical analyses include the interactions between the power generators and loads, measurement and control technology, stability studies, development of protection concepts, and the implementation of intelligent network structures for applying information and communication technology.

Today the volume of electrical power generated from renewable energy sources in Wildpoldsried is five times higher than the community's own requirement. During the predecessor project IRENE, which ran from mid-2011 to the end of 2013, a smart grid was created in this Allgäu community in order to balance power generation and consumption and so keep the network stable. Two controllable distribution transformers and a stationary battery storage system were installed for this purpose.

The smart grid is also equipped with an elaborate measurement system, a modern communications infrastructure, and renewable distributed power generators including photovoltaic and biogas plants. This creates the essential basis for scientifically investigating the optimal operation of independent island networks and topological power plants and testing them in practice.

Wildpoldsried offers ideal conditions for allowing theoretical results to be verified on an actual intelligent energy system. The IREN2 research project will provide lay the foundation for a future renewable energy system that balances the conflicting interests of regulation and the energy market.

Energy-efficient, eco-friendly solutions for setting up intelligent power supply networks (smart grids) and the associated service are part of Siemens' Environmental Portfolio. Approximately 43 percent of its total revenue stems from green products and solutions. That makes Siemens one of the world's leading providers of eco-friendly technology. 

Siemens AG (Berlin and Munich) is a global powerhouse in electronics and electrical engineering, operating in the fields of industry, energy and healthcare as well as providing infrastructure solutions, primarily for cities and metropolitan areas. For over 165 years, Siemens has stood for technological excellence, innovation, quality, reliability and internationality. The company is one of the world's largest providers of environmental technologies. Around 43 percent of its total revenue stems from green products and solutions. In fiscal 2013, which ended on September 30, 2013, revenue from continuing operations totaled €74.4 billion and income from continuing operations €4.2 billion. At the end of September 2013, Siemens had around 362,000 employees worldwide on the basis of continuing operations. Further information is available on the Internet at: www.siemens.com

Reference Number: ICSG201409052e

Contact

Mr. Dietrich Biester
Smart Grid Division

Siemens AG

Gugelstr. 65

90459   Nuremberg

Germany

Tel: +49 (911) 433-2653

Dietrich Biester | Siemens Infrastructure & Cities

Further reports about: Division Grid Smart battery conditions conventional measurement networks structures

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>